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PREFACE

The work reported on herein was conducted under Contract NAS 12-23.
The study director for NASA-ERC was F. Noonan, Control and Information
Systems Laboratory, Electronics Research Center, Cambridge, Massachusetts.
It was administered under the direction of R. W. Hallet, Jr., Director of
Research and Development, Douglas Missile and Space Systems Division.
Dr. J. M. Mendel was the principal investigator; J. J. Zapalac was the
associate investigator; Dr. M. J. Abzug and S. Viglione were technical
advisors. In addition, J. Feather contributed substantially to the study effort.

Under the contract, Douglas was to perform the following:

o Item l--Identify areas on the basis of the existing state-of-the-art in
artificial intelligence techniques, where new and novel design
procedures for space vehicle control systems may lead to long life-
times, invariance performance, and reduced dependence on critical
elements.

e Item 2--Based on the needs identified under Item 1, undertake with
concurrence of ERC technical monitor, preliminary designs and
studies of control systems which may verify feasibility of the concepts.

e Item 3--Provide preliminary evaluation of such newly evolved con-
cepts and system designs to determine specific performance
specifications.

The work performed under Item 1 is separated from the work performed
under Items 2 and 3, in this Report. Part } of this Report, entitled '"Survey
of Learning Control Systems for Space Vehicle Applications, "' summarizes
the work performed under Item 1. Part 2, entitled ''Fine Attitude Control of
a Spacecraft Operating in a Partially Known Environment, ' summarizes the
work performed under Items 2 and 3.

Part 1 of this Report was presented to the 1966 Joint Automatic Control

Conference, University of Washington, Seattle, Washington,
August 17-20, 1966.
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ABSTRACT

The results of a 14 month study of the application of artificial intelligence
techniques to a spacecraft control problem are presented. In the first part
of the report, a survey of the present technology of self-organizing control
systems and a discussion of potential space-vehicle applications for such
systems are presented. Two types of self-organizing (learning) control
systems are outlined: (l) on-line-learning control systems and (2) off-line-
learning control systems. An extensive bibliography is included for topics
related to self-organizing systems and for each of the two types of such
systems mentioned above.

The second part of the report presents a preliminary design of a fine
attitude, single-axis controller for an almost cylindrically symmetrical
spacecraft that operates in a partially known environment. - The design pro-
ceeds in two stages. First, a nominal controller is designed. All available
information about the plant and the environment are incorporated into this
design. The nominal controller is such that if the system and the on-line
environment are as assumed off-line, the on-line attitude errors are con-
tained to within +0. 20 arcsec (as required). The nominal controller is
'nominal" with respect to the overall on-line controller, which is provided
with a capability for updating the nominal controller, when and if updating
is necessary.

The on-line controller designed during the second stage is an on-line
learning controller. This controller utilizes the system's past experience
in attempting to improve the system's present performance. Learning is
accomplished, for the most part, through inclusion of a memory into the
on-line controller.

The complete design embraces the concepts of stochastic-optimal con-
trol theory, combined state and parameter estimation, sensitivity analysis,
control situations, on-line cost functions, on-line learning algorithms
(error-correcting and reinforcing) and pattern recognition.
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Section 1
INTRODUCTION

Artificial intelligence techniques have recently been applied to the
design of self-organizing control systems. Two types of such control sys-
tems have been postulated: (1) on-line-learning control systems, in which
the self-organizing controller learns to control a system whose inputs and/or
plant are incompletely specified and/or known; and (2) off-line learning con-
trol systems in which the controller learns to control a system whose actual
control law is incompletely specified. Each of these systems possesses one
or more of the following attributes, making it particularly attractive for
space vehicle applications: (1) ability to maintain satisfactory performance
in the face of random, unpredictable environments; (2) ability to prolong
satisfactory performance in the face of hostile environments that cause pro-
gressive component failure; and (3) ability to provide opitmum control of
complex plants for which present analytical methods are inadequate for
deriving optimum control laws. Before discussing these particular control
systems, a general treatment of self-organizing systems is given in the fol-
lowing paragraphs to permit discussion of learning control systems within a
common frame of reference.



Section 2
SELF-ORGANIZING SYSTEMS

A self-organizing system is one that changes its basic structure as a
function of its experience and/or environment. Its general aim is to evolve
toward some desired output state or mode of behavior, in spite of some
degree of ignorance of process, inputs, or controls. Since its structure
changes as a function of experience, the self-organizing system can be said
to '"learn'. This is consistent with most definitions of learning--provided that
such a system improves its future performance by analyzing its past per-
formance. A lucid discussion of "learning" as it is related to control systems
is available in the literature (ref. 1l).

A controller that is also a self-organizing system is called a "self-
organizing controller.'" Such a controller contains three basic subsystems:
(1) sensors, (2) learning network, and (3) a goal circuit (fig. 1).

INPUT LEARNING OUTPUT
REINFORCEMENT OR
ERROR CORRECTION
PERFORMANCE
EVALUATOR

N
(ADAPTED FROM CARNE, REFERENCE 2)|  GOAL CRITERIA

GOAL CIRCUIT

Figure 1. Subsystems Which Comprise a Self-Organizing Controller




The sensors (accelerometers, rate gyros, and horizon scanners)
observe the local environment and provide descriptive data to the learning
network and the goal circuit. The learning network consists of decision ele-
ments which operate on data input from the sens\l;grs and which render a
desirable output response. Output data from the)'learning network are supplied
to the system being controlled. The goal circuit directs the system organiza-
tion toward a specific objective and provides information on the degree of
success attained by each trial in terms of the specific objective. This is usu-
ally accomplished by one of the following techniques:

(1) Reinforcement. If present performance is an improvement upon
recent past performance, the goal circuit generates a '"reward"
signal to the learning network, indicating that improvement has
occurred. On the other hand, if present performance is worse than
recent past performance, a '""punishment' signal is generated, noti-
fying the learning network of that fact. In effect, the reward signal
reinforces those states of the network that contribute to improve-
ment, while the punishment signal reverses the states that produced
improper behavior.

(2) Error Correction. A signal is generated by the goal circuit only if
present performance is worse than recent past performance. This
signal reverses those states that produced improper behavior.
Improved performance is not rewarded.

In the following paragraphs, a system with a self-organizing controller
is referred to as a 'self-organizing'" or '"learning control system. "




Section 3
ON-LINE-LEARNING CONTROL SYSTEMS

An "on-line-learning" control system is one in which the inputs and
plant may not be known a priori; the controller is self-organizing and learns
to control the system properly on-line. A representative on-line-learning
control system is shown in fig. 2.

Learning occurs with the self-organizing controller, & embedded in the
control system during real-time operation of the overall system. Learning
that occurs when the performance history of the overall system--over a
sequence of trials--indicates a trend toward improved performance (ref. 1)
automatically improves the control law through the following functions:

(1) Evaluation of results of control choices made by the self-organizing
controller for a given situation and according to a prescribed

criterion.
T SELF-ORGANIZING
_________ B [CONTROLLER 2
L
GOAL
CIRCUIT

|
Qo | FroceSy '

R
]
I
|
|
|
|

|
l
|
|
|
|
L

Figure 2. Representative On-Line-Learning Ccntrol System




(2) Modification of the controller's memory store of parameters or its
logic, so that subsequent control choices reflect the evaluation.

Two systems illustrate the on-line-learning philosophy. The first
system, shown in fig. 3, is an adaptive type.

Parameters a and b are variable. Each contains two components,
a=at K,y and b = B + K2; o and B represent random variations of a and b,
respectively; and Kl and K, represent the controls to offset the random vari-
ations in a and b, respectively. The random variations in a and b are
assumed to change sufficiently often so that purely adaptive action could not
optimize the system during the periods of constant « and . Thus, a learning
capability (fig. 4) was included (ref. 1).

The system shown in fig. 4 is subjected to a fixed-amplitude square-
wave input, r(t), to facilitate the optimization of the performance index, PI,
with respect to K] and K. Constants @ and p are constrained to remain
constant over two periods of the square-wave input; and at each occurrence
of an (o, B) pair, four computations of the PI are carried out, one at each
transition of the square wave. The Pl is optimized on the computer. Speci-
fically, after each computation of the PI, K, and K, are adjusted by a two-
dimensional hill-climbing technique. The best current values of K] and Kj
for a given pair (o;, ﬁi), the directions of K} and K, adjustment, and the
best current value of PI are stored in the computer memory.

.

R(s) + Es) +, o U 1
%& Q) S —)| 3 —)

-

Figure 3. Second-Order System with Two Variable Parameters, Without a Learning Capability
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Figure 4. Second-Order System with Two Variable Parameters with a Learning Capability

The first time the system ''sees'' the pair (@j, B;) it reacts as a conven-
tional adaptive-control system. When the pair (o, Bi) reoccurs, however,
the best values of K] and K are set from memory, and the best directions
to increment K and K7 are known. Adaption then proceeds, and better
values of Kl’ K, direction, and PI replace the old values for (oj, Bi) in the
memory. In this way, the system's past experience is incorporated into the
machinery responsible for future control choices (Kl and KZ)' The random
state variable (RSV) learning strategy discussed by Barron (refs. 3 and 4)
utilizes a random search technique for obtaining K; and K;. The system
begins by making a random experimental change in K} and K,. If system
performance is improved as a consequence of this experiment (as determined
in the goal circuit), the new values for K and K, are retained; otherwise,
the initial changes are discarded, and a new random experiment centered
about the original values of K| and K3 is tried. Learning proceeds in this
fashion to those values of Kj and K3 that provide the best performance.

This first on-line-learning control system has a greater capability than
a conventional adaptive system because it recognizes similarly recurring
control situations (combinations of ¢ and ) and uses and improves the best
previously obtained values of K] and K for each control situation.

A second on-line-learning control system is shown in fig. 5.
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Figure 5. Bang-Bang System Studied by Waltz

In this system, the controller learns to drive the state vector x from any
set of initial conditions to within a distance & of the origin in the state space
in a way that approaches the optimum as defined by the system PI. (This was

chosen to be
n
2
Pl = roxy (rT)
r=1

where n is the sampling instant when x arrives to within & of the origin. )
Learning occurs through a set stimulus-response relationship between ele-
ments of the state space and the control-choice space, which, in this case,
contains only the elements, +1 and -1. The approach is first to design a
controller that partitions the state space into sets called control situations,
and then to learn the best control choice for each situation.

To be specific, the state space is partitioned into circular sets. (For
higher-order systems, the state space is partitioned into hyperspherical
sets. ) This space, according to Waltz, is "partitioned (into control situations)
by constructing circular sets of prespecified, fixed radius D. A given mea-
surement vector (state vector)is considered a member of the set which it is
closest to, providing the distance between the set vector {center of the set)
and the measurement vector is less than D. If this distance is greater than
D, a new set is established, and its set vector is equal to the measurement




vector. Initially there are no sets and sets are only established in the vicin-
ity of observed measurement vectors. Thus, memory is not wasted in
establishing sets in regions where measurements never occur (ref. 1)."

Each circular set (control situation) has either a +1 or a -1 control
choice. All state vectors within the same circular region are assumed to
have the same control choice. Initially, the probability of either a +1 or a -1
control choice is assumed to be the same. In this case, learning is by rein-
forcement of the probability that either +1 or -1 will be chosen for a given
control situation. This reinforcement is partially based on the optimization
of a quadratic subgoal PI every T seconds. (The control choice is fixed over
each sampling interval.) In effect, the optimization leads to either a positive
or a negative reinforcement of the probability that the control choice for a
control situation is +1 or -1. Finally, as learning proceeds, the probability
approaches unity for one of the control choices in each control situation.

In this case, the PI does not enter directly into the design of the control-
ler (which contrasts with the preceding system); although, as stated by
Gibson and Fu (ref. 1), it does enter into the choice of a proper subgoal
PI. (Usually, the Pl has an integral form over a number of sampling
periods. On the other hand, the subgoal PI is defined over each sampling
period. ) Nevertheless, the PI in this case, as well as in the preceding adap-
tive system, may be used as an indicator of learning on a learning curve.

A learning curve is a plot of performance as a function of time, or the
number of practice trials used to measure learning. A typical learning
curve for an arbitrary PI is shown in fig. 6.

PERFORMANCE INDEX (P1)

TIME (t)

Figure 6. A Representative Learning Curve




Improved performance in this case is demonstrated by a reduction in
the PI as a function of increasing values of time. One difficulty in the design
of either of the preceding systems is the choice of meaningful PI's and sub-
goal PI's. This is pointed out by Gibson and Fu (ref. 1) who note that the PI's
chosen should have a unique minimum that will be sought out by the system.
In terms of learning curves, this means that after sufficient time or practice
trials, the PI should remain constant. An interesting choice for an index of
performance is made by Connelly (ref. 6) and Barron (ref. 4), who demon-
strate the feasibility of using stability criteria in the goal circuit.

The objective of Connelly's study was to design a 'bang-bang'' controller
that would maintain stable operation for the plant K/s(s + a) in the face of
plant changes, controller changes, and controller deterioration. A Lyapunov
function, V(x), is defined and evaluated in the goal circuit. The goal circuit
then rewards those control choices for which V(E) < 0 and punishes those for
which V(x) > 0. The system is similar in many respects to the system
studied by Waltz (fig. 5), except that the learning network consists of statis-
tical switches which learn under the influence of the goal circuit to provide
the proper control choice. Barron claims better control when using V(i)
instead of V(x). This means that his goal circuit generates a reward signal
if V()_(_) < 0 and a punish signal if V(x) > 0.

The ability of a system to improve its performance to a recurrent situa-
tion typifies the behavior of an on-line-learning system. For example, if
the system in fig. 5 is subjected to the disturbance xp(tj), then xp(tj), and
then EA(ti) again, it does not behave as if it had never encountered XA (t;).

In short, its adaptation to EB(ti) does not destroy its previous adaption to
x Alty)

Theoretically, the on-line-learning controller can be trained during the
real-time operation of the overall control system in which it is embedded.
In practice, however, this training is performed before the entire system is
operable. In this way, overall system performance is brought up to an
acceptable level during what might be called on-line training. Starting at
this level, the on-line-learning controller continues to adjust to improve per-
formance during the real-time system operation.

For on-line learning to improve a system's performance while on-line,
new information must be made available to the on-line-performance assessor.
This means that information not available a priori must be utilized by the
performance assessor in making the decisions as to how or if the controls
should be modified. If no new information becomes available on-line, the
controller could have been designed ahead of time; and there would be no
need for an on-line-learning capability.

Space vehicle applications for the on-line-learning concept seem abun-
dant. On-line-learning control appears most suited to unmanned applications,
such as attitude control of orbiting vehicles, solar probes, and atmospheric-
entry vehicles. Unmanned geophysical research and weather satellites are
required to maintain attitude control with respect to Earth for long durations.




For greater pointing accuracies than afforded by gravity-gradient techniques,
a long-life, active system is needed. This could be a system with current-
carrying coils that are powered by solar energy and that interact with Earth's
magnetic field. On-line learning could minimize energy use and attitude
perturbations during seasonal changes in radiation and atmospheric external
torques.

On-line learning could also be used to provide fine attitude control such
as would be required by a laser communication satellite in Mars or Earth
orbit. In these applications, the overall goal would be to keep a number of
state variables (attitude errors) within a region centered at the origin of the
state space when the satellite is subject to random disturbances (for example,
solar and atmospheric perturbation torques) and/or component deterioration,
including progressive failures. A second application in which the on-line-
learning concept would cope with progressive failures is a solar probe to
distances of less than one-half an astronomical unit (AU). This application
suggests the use of fluid control rather than electronic components and is
contingent upon advances in the survivability of other subsystems as well,
particularly communications. Another potential application would be the
atmospheric-entry attitude -control system for an unmanned planetary probe.
This control system may deteriorate on the long journey to another planet.
On-line learning could commence during the actual entry and achieve the best
possible performance with the degraded system.

Finally, an application of on-line learning for the distant future would
be the logical organization of automata to implement exploration and experi-
mentation on other planets. On-line learning could minimize energy use in
the performance of assigned tasks.
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Section 4
OFF-LINE-LEARNING CONTROL SYSTEMS

An "off-line-learning'' control system is one in which the inputs and
plant are known a priori; the actual controller is incompletely specified
(partially known) and is replaced by a self-organizing system which learns
(is trained) to control the system properly off-line.

A representative off-line-learning control system is shown in fig. 7.

Learning occurs with the switch S in position @ ; the self-organizing
system, §§ is shown representative problems and their solutions. For each
sample, certain internal modifications to the learning network increase its
proficiency. Training requires no external intervention and is systematically
convergent toward a learned state. At this point, internal modification of the
learning network stops, and it now behaves in a conventional deterministic
fashion; i. e., its responses to problems are not based upon any statistical
phenomena or past history but are dependent upon its present static internal
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3|  GOAL CIRCUIT

b e
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@
INPUT 5 ACTUAL
+, O\ CONTROLLER PLANT OR PROCESS OUTPUT
G| et e [T

Figure 7. Representative Off-Line-Learning Control System

13




state. Its performance, therefore, will be exactly repeatable. Further-
more, if well trained, the learning network will be able to generalize prob-
lems not encountered in training and obtain solutions corresponding to the
most similar problem encountered in training. The generalization ability of
the learning network allows the incompletely specified actual controller to be
bypassed during the real-time control of the plant. With the switch S in
position @, however, the system shown fig. 7 behaves like a conventional
nonadaptive control system: learning does not occur.

In the control-system applications of off-line learning discussed in the
literature {(refs. 7 through 10}, the self-organizing system is of the type
shown in fig. 8; for clarity, e is assumed to be a two-dimensional state vec-
tor and u is assumed to be a scalar.

This type of system--without the input encoder--has been described
variously as a learning machine, ‘an adaptive pattern recognizer or classifier,
an adaptive majority-vote taker, an adaptive linear neuron, and an adaptive
linear-threshold element (ADALINE). In the sequel, the complete system is
referred to as an adaptive computer. The only other adaptive computers
reported utilize an Artron (ref. 11) and a Neurotron (ref. 12).

The e) and e inputs to the adaptive computer in fig. 8 are each divided
into m quanta. The V's are binary signals having the value of +1 or -1; V4
is a fixed threshold input set at + 1. The set of 2m inputs Vl’ ceee, V2 is
often referred to as an input pattern (ref. 9). m

=41
o
|V1
¥ Ve | €1
m
ENCODER | T A L,
(QUANTIZER) [ y 44 ) % : )
e‘z H -1
g |V2m}e21
2m
‘.L u, =SGN I WjV;
e1]- e i=0
er] = ERROR CORRECTING
SIGNAL
Vi 1
iy ADAPTOR  [*
v (COMPARATOR) | _ u
Vom '

Figure 8. Adaptive Computer,<g
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The weights, Wj, are learning parameters. The learning feature of J&
is provided by the adaptor which adjusts weight values through an iterative
training procedure (learning algorithm) to minimize the error between the
output, uy, of the adaptive computer and some desired output, u.

During the training process, the adaptive computer changes its weights
only upon the basis of the input pattern present and the desired output pattern.
Weights are adjusted by error-correcting techniques known to lead to conver-
gent methods of adaptation for adaptive computers (ref. 13); reinforcement
techniques may lead to divergent methods of adaption. Weights are changed
only when an input pattern gives an output, u;, opposite the desired output,
u; they are all changed by equal increments.

During training, storage of input patterns or calculations involving more
than one input pattern at a time is not necessary. Instead, the input pat-
terns are presented to the adaptive computer sequentially, several times,
until all those in the training set are being correctly classified, or until the
number of classification errors have reached some steady-state value. Dur-
ing the training procedure, the input patterns may be presented in any order

(ref. 9).

Often, a PI, such as the sum of the squares of the errors between the
desired and actual outputs of the adaptive computer, is plotted versus the
total number of input patterns adapted to by the computer. Such a curve
indicates the learning progress of the adaptive computer during training;
however, it is meaningful only when switch S (fig. 7) is in position D. As
previously noted, learning does not occur when switch S is in position @).

An overall PI and a subgoal PI for the adaptive computer are distin-
guishable (see the second Purdue system discussed previously). The subgoal
of the adaptive computer is correct classification of each input pattern. This
subgoal directs the updating of the weights, W;. The overall PI is that the
adaptive computer correctly classify all such input patterns. The overall
goal determines how often the sequence of input training patterns has to be

applied to the adaptive computer before complete learning occurs.

The most attractive feature of the adaptive computer is its ability to
generalize input patterns not encountered in training and to obtain solutions
corresponding to the most similar input patterns encountered in training.
Generalization relates to the concepts of linear separability (ref. 10) and
projectability (ref. 7). Moreover, the adaptive computer remains very
reliable despite component failures (the weights, W) and is particularly well
suited to resolve problems for which no analytical solutions can be found.

In fig. 8, uy, is limited to two values, %1; thus, the desired output, u,
must also be limited to *1; otherwise the adaptive computer could not learn
to simulate the actual controller. The adaptive computer is especially
useful, therefore, in those situations where the actual controller is the bang-
bang type; hence, almost all applications of the adaptive computer in off-line-
learning control systems have been limited to the time-optimal control of
linear systems where the actual controller is bang-bang. These studies

15




involved (with modifications resulting from individual treatment by each
author) the following (see fig. 9):

(1)

(2)

(3)

(4)

(5)

Quantization of the state space in region of interest and identi-

fication of the resulting hypercubes with linearly independent
codes.

Selection of a subset I from the complete set of initial
conditions {x(0)}

Computation of the open-loop optimal-control, u*(t), and tra-
jectory, x*(t), for each element of I and for a specific plant,

Identification of the controls for the hypercubes through which
the trajectories pass; let these hypercubes and their controls
constitute the training set S.

Training an off-line learning controller by means of the set S
in 4.

These five steps constitute a nonparametric training procedure, which

is fairly well established in the discipline of pattern recognition (ref. 13).

u ADAPTIVE COMPUTER \m

CONTROLLER

T

Figure 9. Adaptive Computer for Time-Optimal Control of a Linear Plant
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A significant difference in the studies reported in the literature (ref. 8
through 10, and 14) is the selection of the subset I from the complete set of
initial conditions {x(0)} sufficient for complete learning. Van Nortwick
(ref. 10) and Zapalac (ref. 14) train the adaptive computer on a set of input
patterns from every square in the quantized state space. F. W. Smith
(ref. 9) trains the adaptive computer on a set of input patterns from every
hypercube in the quantized state space that borders the optimal switching
surface. In this case, the optimal switching surface is known a priori.

Both of these approaches are practical only for low-order plants. However,
F. B. Smith (ref. 8) considers high-order systems for which the exact form
of the optimal switching surface, as a function of the state variables, is not
known. In these systems, the adaptive computer is trained on a set of input
patterns uniformly distributed in the quantized state space. For example, in
the control of a fourth-order rigid vehicle, an arbitrary region of the four-
space is defined and quantized into 524, 288 four-dimensional cubes. The
adaptive computer is trained on a set of 400 initial conditions chosen at uni-
form intervals in the arbitrary region. This represents only 0. 076% of the
total input patterns. According to F. B. Smith, "If the sample set I is suffi-
ciently representative, then the controller obtained will provide control with
desirable characteristics for a much wider class of inputs than the sample
set' (ref. 8). More recently, Smith has extended his study to include the
time-optimal control of systems with variable plants.

At present, the off-line-learning concept, which represents a control
system application of pattern recognition, serves as a useful design tool by
achieving practical realizations for closed-loop (sub-) optimal control laws
for systems where analytical solutions are not feasible. In addition, off-
line-learning controllers are extremely reliable in the sense that failures of
one or more weights in the adaptive computer do not markedly deteriorate
system performance. The full potential of off-line-learning control systems
has not been realized, however. At present, the only self-organizing system
apparently utilized in these systems is an adaptive computer with a single,
linear-threshold element. This necessarily restricts the application of this
type of computer to the class of bang-bang controllers. Although thisincludes
the important application of time-optimal control, it eliminates problems
that frequently occur in space-vehicle applications, such as minimum-fuel
control, minimum-energy control, and any controller requiring multilevel
outputs. Finally, all time-optimal switching surfaces are not necessarily
realizable with single linear-threshold elements. The surface usually must
be projectable to permit this realization (ref. 7 and 14). By including more
threshold devices in the adaptive computer, it should be possible to make
them applicable to control problems other than time-optimal problems. For
example, it has been shown that two linear-threshold elements can realize
the three states, -1, 0, and +1. It is likely, therefore, that an adaptive
computer containing two threshold devices would be useful in the minimum-
fuel problem for realizing the closed-loop optimal control law, where, as is
well known, the optimal control law (for linear systems) is of the on-off-on
(relay with dead-zone) variety (ref.15). An interesting space-vehicle applica-
tion is one in which the off-line-learning controller is trained to act as a
backup mode for man during a specific mission, such as re-entry. In this
application, man supplies the required training samples through on-ground
simulations. This can be considered analogous to optimization theory which
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Section 5
CONCLUDING REMARKS

To combine the advantages of on-line and off-line systems, one could
provide the off-line-learning control system with an on-line learning capa-
bility. A block diagram of such a system is shown in fig. 10 (Reference 16).

With switches Sy in position @ and Sy in position @ , the system reduces
to the off-line-learning control system shown in fig. 7. On the other hand,
with switches S; in position @ and Sy in position @ , the system reduces to
the on-line-learning control system shown in fig. 2.

While the combined system is conditioned on all available a priori infor-
mation about the plant and environment, as in an off-line learning controller,
its main advantage is that it would be able to reorganize if the system experi-
enced a partially known or unknown environment, or if components deterior-
ated, as in an on-line-learning controller. Such a combined system is
described in Part 2 of this report, in connection with the fine attitude control
of a laser communication satellite in Mars orbit. Nominal controls are
designed with a priori information about variations in plant parameters and
disturbance torques. On line, the nominal controls may be updated to com-
pensate for incorrect or incomplete information about actual disturbance
torques.

To demonstrate another possible advantage of an off-line system with an
on-line learning capability over off-line- and on-line-learning control sys-
tems, a hypothetical PI is assumed which is meaningful for both off-line and
on-line learning. (A major problem is to find a PI meaningful for both on-line
and off-line learning.) Fig. 11 presents a comparison of the three control
situations: (l) training plus on-line learning; (2) training and no on-line
learning; and (3) on-line-learning with no prior training.

Learning occurs in (2) only during the training period, as is evident from
the constancy of the training and no on-line learning curve during on-line
operation. Note that, until time T, the performance of (2) is better than the
performance of (3). For t > 7, however, (3) swiftly overtakes the perform-
ance of (2) and eventually reaches the minimum PI, whereas the performance
of (2) remains unchanged. Also, (1) reaches the minimum PI sooner than (3)
because when on-line learning begins, (1) starts out with a lower PI than (3).
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Section 1

INTRODUCTION

The purpose of this report is to describe the results of a study in which
artifical intelligence techniques are applied during the preliminary design of
a spacecraft attitude control system. Answers to questions about the feasi-
bility of designing an attitude control system using the present state of tech-
nology in artificial intelligence techniques are sought in the context of a
specific spacecraft application. New artificial intelligence techniques are
not developed, since it is not within the scope of the present study to do so.

The artificial intelligence techniques considered are: (1) on-line
learning, which embraces the concepts of: (a) control situations, (b) on-line
cost functions, and (c) on-line learning algorithms; and (2) off-line learning,
which embraces pattern recognition. The unique feature of the present study
is that all of these techniques are used simultaneously.

The specific spacecraft application considered is the fine attitude control
of an almost cylindrically symmetrical satellite in Earth or Mars orbit, such
as a laser communication satellite in Mars orbit. By fine attitude control is
meant that mode of control in which attitude errors are brought from within
*M arcsec (about 80 arcsec) to within *€ arcsec (e.g., #0.20 arcsec for a
laser commugication satellite). It must be noted that 1 arcsec is equivalent
to 4.85x 1077 radians. The distinctions between coarse and fine attitude
control and fine-pointing control are found in Appendix A (at this point it is
recommended that Appendix A be read in its entirety). The property of
cylindrical symmetry initially permits the study of the control of a second-
order system. This system is linear, time-varying and, in addition, is
excited by a disturbance torque £(t) which, because of a lack of or an incom-
plete knowledge about it, is assumed to be a poorly defined stochastic
process.

The system is controlled by a controller (inertia wheel) with an output
signal that is proportional to the states of the system (fig. 1). The overall
goal of the controller is to keep attitude errors (x)) very small, less than
*+0,20 arcsec. Since {f(t) is a stochastic process, x(t) is a stochastic process;
hence, one way to properly control the system might be to choose ul(t) such
that

E

o]
f [gT W; x + ulz]dt]

o
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CONTROLLER
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(b)

Figure 1. Second-Order System Disturbed by Perturbation Torques(t). (a) Block Diagram,
, (b) Mathematical Relationships




is minimized. If £(t) and a (t) were known ahead of time precise descriptions
of them could be ingcorporated into this optimization problem; the resulting
optimal control, uj (t), would then not only be optimal with respect to the
model of the second-order system but would also be optimal with respect to
the actual system, since the two would be one and the same.

Since £(t) is not known ahead of time an approximation of it is used in the
optimization procedure. Specifically, £(t) is approximated by a first-order
Markov process (see fig. 2). In this case, the resulting optimal control
u’g (t) [to be distinguished from u’f (t)], while optimal with respect to the model
in fig. 2, is not necessarily optimal with respect to tlle actual system in
fig. 1 in which it will ultimately be used. In short, uj3(t) is sub-optimal with
respect to the actual system; hence, even though u’é‘(t) may cause the system
in fig. 2 to respond satisfactorily it may not sufficiently reduce the attitude
errors in the actual system. A poor response may occur in this case as a
result of discrepancies between L(t} and its first-order model, discrepancies
which, due to a lack of a priori knowledge about L(t), cannot be adjusted until
the system is in actual operation (in orbit around Mars, for example). These
adjustments are accomplished through on-line learning.

Basic premise: For on-line learning to improve a system's performance
during the actual operation of the system new information must be made avail-
able to an on-line performance assessor; that is to say, information which
was not available a priori (off-line) must be utilized by an on-line performance
assessor in making the decisions how or if the sub-optimal controls should be
modified.

An on-line-learning controller is depicted in fig. 3 for the actual system
shown in fig. 1. The on-line-learning controller represents an extension of
the controller depicted in fig. 2; an on-line goal circuit (performance
assessor) is now available for making decisions as to whether or not the on-
line -~optimal control, u*(t), should be updated. The design of the on-line-
optimal control proceeds in two steps:

(1) The sub-optimal controls u’é(t) (fig. 2) are designed for different
combinations of the augmented plant parameters, a(t) and a(t). These
controls use all of the available information about the system and its
actual environment. In the sequel, these controls are referred to as
nominal controls.

(2) The nominal controls are updated on-line if updating is necessary.
This updating is accomplished through on-line learning.

Initially u*(t) = uz (t). The new information which serves as the basis for
the decisions made on-line by the on-line goal circuit (fig. 3) comes from
measurements of the actual attitude errors. These measurements provide
information about the partially known environment. After the measurements
are made they are processed in the form of an on-line cost function which is
then used in an on-line-learning algorithm for updating the control.

It was mentioned above that the on-line-learning controller represents an
extension of the controller depicted in fig. 2. Unfortunately, the model in
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CONTROLLER

(a)

X (1) = Ay() X ,(t) = by uy(t)+ 1, wt)

T
ia (“ = (xl' er é‘)

u, (1) and o () ARE SCALARS

Etvt)t=0ANDEt v{tiv(nl=V(OS(t- 1)

(b

Figure 2. Second-Order System Where Actual Disturbance Torque is Modeled by a First-Order
Markov Process. (a) Block Diagram, (b) Mathematical Relationships
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fig. 2 is an oversimplification of the real situation. In reality, it is not
possible to observe £(t); hence, £(t) must first be estimated and then the
estimated value of £(t) is fed back as part of u™(t) [fig. 3; or uz(t) in fig. 2]
In addition, it may not be possible to measure x;(t) and x,(t) exactly (if,
indeed, both states are measurable); that is to say, the measurements may
be corrupted with noise. This seems likely in the laser communication
satellite application, since x)(t) and x,(t) are quite small. x1(t) and x,(t)
may, therefore, also have to be estimated, in which case the estimated
values are fed back as part of u®(t) (the assumption that it is possible to sep-
arate the estimation and control problems is discussed in later sections of
this report).

Hence, in order to mechanize the control u*(t) estimates of x(t), xz(t) and
£ (t) must be obtained from noisy measurements. In addition, estimates of
the parameters a(t) and a(t), which characterize the plant and disturbance
torque, respectively, are obtained. They are obtained for two reasons:
(1) to provide the initial choice for u"(t), since u2 (t) is precomputed
for different combinations of a(t) and e(t), and (2) to implement a control
situation concept which is used during on-line-learning.

For the mechanization of the on-line-learning system in fig. 3, the
following sub-problems are considered in the sequel in greater detail:

(1) Evaluation of nominal controls

(2) Estimation of states and parameters

(3) Development of an on-line-learning procedure
The above sib-problems are discussed in Sections 2, 3, and 4 of this part,
respectively. Experiments which test the proposed on-line-learning pro-

cedure are described also in Section 4 of this part. Conclusions and sugges-
tions for further work appear in Section 5 of this part.




Section 2

NOMINAL CONTROLS AND NOMINAL CONTROL SITUATIONS

Introduction

Controls, in the design of which all the available information about the
system and the environment is incorporated are referred to as nominal
controls. The nominal controls for the system in fig. 3 are obtained by
formulating and solving an optimal control problem for the system in fig. 2
in which all of the available information about the system and the associated
environment has been included. These controls are proportional to the
augmented state vector :_{a(t), as required.

The details of the design of the nominal controls, for specific values of
the plant parameters, appear in Appendix C. It is recommended that
Appendix C be read in its entirety at this point. For completeness in the
present exposition, the results of the design and the major assumptions made
during the design are presented in the next subsection. There the nominal
controls are obtained by freezing the plant parameters a(t) and a(t) [specific
values of a(t) and a(t) are denoted a and o, respectively], after assuming
that ranges for both parameters are known a priori. Since it is not very
feasible to evaluate the nominal controls for every combination of a and o,

a practical realization of the nominal controls must be found. The usual
approach is to partition the augmented plant parameter space (the a-a space)
into squares (hypercubes in a higher dimensional augmented plant parameter
space) and to associate a single control with each square. Such as association,
or mapping, is depicted in fig. 4. The partitions, loosely speaking, relate to
the concept of control situations. This is elaborated upon in the subsection
entitled '"Partitioning of Augmented Parameter Space.'' A simulation of the
system in fig. 2 is discussed in the subsection titled "Simulation Studies. '
The purpose of the simulation was to observe the effects of the numerous
assumptions made during the design and realization of the nominal control

on the attitude error (which must be kept within %0, 20 arcsec).

The controller designed in this section is an adaptive controller ‘in that
feedback gains are changed if plant parameters change. In addition, the
feedback gains for the time-varying system are time-varying, even though
the nominal gains are not. This is a result of the adaptivity of the nominal
controller.
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P o

13 14 15 16

P a

(a) (b)

Figure 4. (a) Partition of Augmented Plant Parameter Space and (b) Nominal Feedback Parameter
Vectors TE'A, Each Associated With an ith Partition in(a), i = 1, ..., 16.

Summary of Design

In Appendix C, nominal controls are designed for the system in fig. 2,
when a(t) and «(t) are held constant, by optimizing a cost function which is
quadratic in the attitude error and control. The optimal control problem is
a stochastic optimal control problem, since the attitude error, xj(t}, is a

stochastic process. Rather than solve the stochastic problem directly, the
solution is obtained in two steps:

(1) X, (t) is estimated by filtering theory (discussed in Section 3 and
Appendix B)

{2) The optimal control for the noise-free regulator problem[ u; (t)]
is obtained.

u. (t), in fig. 2, is then obtained frcem items 1 and 2 accordmg to the

Separatmn Theorem (ref. Cl). Three assumptions are made in this solution
for uz(t)

(1) Nominal controls for the time-varying system can be found by

employing a design procedure in which the time-varying parameters
are frozen initially at specific values

_ T
TEA' ()\1 Ay )\3) ; see eq. (C8).




(2) The Separation Theorem may be applied when states and parameters
are estimated using a nonlinear estimator,

(3) Ranges on a(t) and o(t) are known a priori.

As shown in Appendix C,
u*(t) =A% (t|t) (1)
2 -a
where

= () Ay 0y) (2)

A, = -(a-\/aZ+P> | )
\/2 (Va2+p-'a) (4)

N = - 1000 [a\/Z(Va2+p-a)- V(a2+p)+a] (5)
a2+\/(a.2—+p)-a\/zm - a

and p is a weighting factor that is directly proportional to control effort and
inversely proportional to attitude error. This weighting factor is designed
for a worst-case design in which the disturbance noise v(t) is replaced by
+3,/V (see fig. 2) and attitude errors are constrained to remain less than
or equal to +¢ (0.2 arcsec) in the face of this step-type disturbance.

The following inequality results forp:

>
It

4 3 2 2 2 2 4 4
rt 4 2C, r7 + (2C7+CH r° 4 2C] (C,-2d") r+CT =0 (6)
where
p=r-a’ (7)
c 3000 VV o’ +a (8)
1 € «
and 2 >
C2 = a (2a.+ar)-2.C1 (9)

The solutions for P in eq. (6) are obtained as described in Appendix C.
As these solutions are for specific values of a and o, and since this section is
primarily interested in a single value of p for regions in the augmented plant
parameter space, due to the time-varying nature of a and @, these solutions
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shall not be elaborated here. Instead, the section shall indicate how eq. (6)
can be used to obtain a s1ng1e value of p, and subsequently a single feedback
parameter vector, for regions in the a - a space, as in fig. 4.

Control Situations for Nominal Controls
Here the nominal controls are obtained for specific control situations.
A control situation is defined as a region in the augmented plant

parameter space for which a single control (feedback parameter vector)
leads to satisfactory performance for all points contained therein.

One might assume that a control situation can be constructed quite
arbitrarily about the point at which the nominal control (for all points within
the control situation) is calculated. In fig. 5, for example, the nominal
control is computed at (a, @) = (3, 2) and either a square or circle is
constructed, each centered at (a,g). It is incorrect to assume that these
figures are control situations, in the sense of the definition above, since
there is no guarantee that all points within these figures will have a satisfac-
tory performance associated with them. In general, an admissible region
for variations in a and « about (a, ¢) must first be determined and then a
control situation within the admissible region must be constructed. The
concept of an admissible region relates the phrase satisfactory performance,
in the definition of a control situation, to the boundary of a control situation.

Figure 5. Arbitrary Partitions in Augmented Plant-Parameter-Space




An admissible region is defined as the region in the augmented plant
parameter space (subject to constraints on a and @) for which the system
performs satisfactorily under the action of a single feedback parameter
vector (control). A control situation, in general, is a sub-set of an
admissible region. It follows, therefore, that before control situations can
be constructed the admissible regions must be determined.

Admissible Regions. --The concept of an admissible region relates to
satisfactory system performance. Here, the following is assumed:

Satisfactory performance is achieved if, when v(t) is replaced by *3/V ,
as in the section titled the "Worst-Case Design for Weighting Factor p, ' in
Appendix C,

lxl ()| = € = 0.20 arcsec (10)

As pointed out in the preceding section, eq. (10) is equivalent to the inequality
in eq. (6). For the purposes of the present analysis, it is convenient to let

C
_ =3
€, = = (11)
and
C
_ "4
where
_ 2
C3—K(a+a) (13)
K = -3000VV (14)
€
and
C, = a> (2a+a% -2cC.. (15)
4 3

In the derivations of eqs. (11) to (14), it was assumed that <0 and that

(a + @®>0. The results obtained below are easily generalized to include the
case when (a + az)<0. Upon substitution of eqs. (11) and (12) into eq. (6),
the latter equation becomes

ot 4 2C,@° 1 + o (2t + cye? 4 zac‘;‘ (C, - 20°) r+Ch=o (16)

This inequality is the starting point in the determination of admissible regions.
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Let (a,e) be the values of a and a at which the nominal control for a
control situation is computed. Associated with this nominal control is a
value of p, designated P, which is found from eq. (16), witha =3 and @ =g¢g;
that is to say, P is a solution of the inequality

4 4 3.3 2 2 5 4
3

2 2 2
ot rag, 0 et gy g T v 2eC (G -2 pH Cy =0 (1)

where C3 and C4 are evaluated by replacing a and ¢ with a and ¢ in eqs. (13)
and (15), respectively.
Within each control situation¥

a = a+da -M, (g)séasMZ(g) (18)

and

a = a+ ba -M3(g)550’

1A

M, (@) (19)

It must be observed, that the bounds on 6a and S« are, in general, dependent
upon the specific values of 3 and ¢; however, as there is no apparent procedure
for choosing these different bounds, it is assumed that

M, (@) = M, (8 = M, (a) = M, (2) = M (20)

An additional assumption is that M is small; hence, &a and o are small
variations in a and ¢. Eq. (20) represents the constraints on a and o referred
to in the definition above of an admissible region.

Now, for all points within an admissible region (and, hence, a control
situation) eq. (16) must be satisfied. For these points, if one neglects
second- and higher-order effects (6a and 6@ are small), r, C3 and C4 become:

r = r + 2aéa (21)
= A
C3 (;3 + K (ba + 2aba) 2 93 + f)C3 (22)
3 4 2
C, = Cyt 276 + (5@ + bag ) da- 2"3C3 (23)

Upon substitution of egs. (21) to (23) and powers of these equations, in
which second- and higher-order effects are neglected, into eq. (16), one
obtains the following inequality for da and éa:

f1 (a, o, p) 6a + f2 (a, @, p) dba + (_;5 =0 (24)

*To be more precise, the notation gl and gl, which denotes the £thcontrol
situation, should be used; however, for notational simplicity, this will be
assumed, but not used.




where

and

4
£ @ap) = Baa?+ 4® - axa) P+ (1224 C,+ 4 C K +
5 2 2 2 2 .2, , 4.2
40" C, - 4a C4K_)r + (8a o C,y+ 4a a Cyt 42 Cyt
40 C, C,K - 8¢° C.K - 4aC?K) r + (42 CEC
2C3Cy 2 &5 2CK)r + (4aaCyCy -
6 .2 3
8a oa” C2 + 4 C,K) (25)
= a2’ 1% + (6 c, + 1007 + 1230° - 82'K) £+
(82> C.K + 10C, o® + 12aaC, + 4aC 2+ 2aC2-
2" C3 Cq2 28 Cy 4Gyt 22C,
3 2 5 3 .2 5 .2 2
82° C,K) r° + (10a° ¢ 2+ 12a o ¢ 0~ 208° ¢ 2+ 2¢, ¢ 2 +
2 5 .2 7 2 .2 3
8a° C,C, K - 42 C. - 1627 C,K - 8a° C,°K) 1 + 82 C, 'K
(26)
44 33 2, 2. .2 2
¢, =dtrtrag, 0 v P gt gt
2 5 4
20 C,“(C, - 287) £ + €, (27)

Equation (24) together with the facts that |6a] <M and |6al = M define
the admissible regions in the augmented plant parameter space. * The four
possible regions are summarized in Table I. From these results one
observes the following:

(1) The point (a, @), at which the nominal control (for a control situa-
tion) is computed, is usually not at the center of the admissible
region. In fact, if P is computed from the equality in eq. (17),

Cs

= 0 and the point (2, g) is on the boundary of the admissible

region.

(2) Once the admissible region is determined a square or circular
control situation can be constructed within it. Illustrations of such
constructions appear in fig. 6. It must be observed that (a,a) does
not even have to be contained within the control situation.

*Observe that QS < 0. This fact is made use of in Table I.
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Figure 6. Construction of Square and Circular Control Situations (C.S)
Within the Admissible Regions (A.R.)

Control Sityationsg. - -Next, the conditions under which it is possible to
center a square or a circular control situation at (2, g) are investigated. It
is assumed here that p is evaluated from the inequality in eq. (17). The
results below apply for each of the cases depicted in Table I; they are illus-
trated in figs. 7 and 8 only for the third case.

Circular Control Situation Centered at (a, a): Using relatively straight-
forward geometric arguments, it is possible to show that for the condition in
eq. (28) or (30), eq. (29) or (31), respectively, defines circular control
situations that are centered at (a, @). Two cases are depicted in fig. 7.

c £ \2
(A) If f—5 < M1 +<f_z> 2 CIRCLE (28)
1 1
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C 2

(6a)2 + (6a)° = 5\ (29)

2 2

1%+ 1,

o £\
(B) If —f—5 > M 1+<?‘?‘—> (30)

1

62)% + (62) = M (31)

' Square Control Situation Centered at (a,¢): Again, using simple geomet-
ric arguments, it is possible to show that for the condition in egs. (32) or
(34), egs. (33) or (35), respectively, defines square control situations that
are centered at (a, g). Two cases are depicted in fig. 8.

]

gS
(A) If T < M
1
‘63.
(B) If

2
Discussion: It must be observed that, since M\/1 + (%) <M <1 +

Ss
£

|6a|

2

f
1+ ;—2— A SQUARE (32)
1
|€5]
5
< (33)
1f] %2
£
M1+ |2 (34)
1
[6a] = M (35)
2
fy

it is always possible to construct the maximum circular control situation (of
radius M) before it is possible to construct the maximum square control

situation (of length 2M).
admissible region,

whereas the maximum circular

The maximum square control situation equals the

situation excludes the
there is a tradeoff between circular

corners of the admissible region; hence,
and square control situations.

Partitioning of Augmented Plant Parameter Space. --Here the above
theoTy is applied to partition the augmented plant parameter space into square
control situations which are centered at (a,¢) and which have a single value
of p associated with each of them. The specific ranges for a(t) and o (t) are:

-0. 40 40

A

< 0.

a (36a)

-1.0 (36b)

IA
1A

a -0.10
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Figure 7. Construction of Circular Control Situations Centered at (a a), for Cases (A)

and (B) in Eqgs. (28) and(30), Respectively

ba

¢

oets

(b)

A) and (B)

(

Figure 8. Construction of Square Control Situations Centered at (a, a), for Cases

, Respectively

in Egs. (32) and (34)
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As discussed above, once a and g are fixed, a range of values for p must
be determined from eqs. (17) or (6). Eq. (6) was simulated on the IBM 7094
for over 200 combinations of a and ¢. It was observed in every case that eq. (6)
has two real roots which are very close to one another; that C, always lies
between these real roots; and, that =1

left-hand side of eq. (17) <0.

In the procedure described below for partitioning the augmented plant
parameter space (a - a space), it is initially assumed, therefore, that
p = Cj. In addition, it seems h1gh1y desirable to partition the a - o space
into squares that are all of the same size; hence, eq. (34) must be satisfied
for all values of a and ¢ (sufficient to partition the a - ¢ space). The following
procedure was used for partitioning the a - o space:

1. Choose a and g and set M = 0. 10 (for all combinations of a and g )

2. Evaluate f) (2, 2, C), £ (a, @, C)) |%fz| and SQUARE [eq. (32)]
1

3. Perform the test in eq. (34).

If eq.(34) is true for M =0.10, P = ¢} and for all values of a2 and ¢
(sufficient to partition the a - aspace), the design is complete.* If, on the
other hand, eq. (34)does not hold for some combinations of a and ¢, any one
of the following design refinements may be tried:

1. Set M to a smaller value, keeping £ = C
2. Choose a different value for P, keeping M = 0.10
3. Choose different values for P and M

4. Choose a different set of plant parameters at which to center the
control situations.

Design results for the case when M = 0. 10 and £ = C) are summarized
in fig. 9. Note that both CIRCLE [in eq. (28)] and SQUARE are plotted on the
figures, in order to demonstrate that in all cases circular control situations
impose a less severe constraint than square control situations. Observe,
also, that for large negative values of a2 §_5 goes below SQUARE, which

f1

means that in those cases eq. (34) does not hold; hence, a square control
situation of dimension 0. 20 x 0.20 cannot be constructed for certain combi-
nations of 3 andg. As a becomes more positive the design becomes more
successful. The des1gn was modified by setting M equal to 0.05 and, in

*Larger values of M could be tried.
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those few remaining cases where eq. (34) still did not hold [e.g., a = -0.40
and o = -0.60], by rechoosing P. The final partition of the a - o space is
depicted in fig. 10. There the control situations are labelled 1 through 90.

The weighting factor associated with each nominal control situation is
tabulated in Table II. In addition, the components of the nominal feedback
parameter vector are tabulated in Table III. These components were
obtained from eqgs. (3) to (5) and the values for P in Table II. Observe, in
Table III, that A3 is insensitive to a and a; that X is not very sensitive* to
a and o; and, that\] is rather sensitive to a and . These observations are
utilized in the on-line learning experiments which are described in Section 4
of this part.

Note, finally, that the nominal controls in Table III represent the initial
controls (feedback parameter vectors) for the on-line-learning control
system in fig. 3 of this part.

Simulation Studies

In order to check the performance of the system under the action of the
nominal controller, the system in fig. 2 was simulated (on the IBM 7094).
The experiments that are described below were performed in order to observe
the effects of the following on the attitude errors:

l. A time-varying parameter [a(t)]

2. An incorrect knowledge of the disturbance torques.

The simulated system is depicted in fig. 11. The assumptions made
during the simulations are listed below.

1. All states are available, which means that in eq. (1) the following
is true:

Xt = x_ () (37)

2. The plant parameters are generated, which means that¥x

f’A (t|t) = By (1) (38)
a a

*\, in eq. (4) appears, at first, to be only a function of a; however, as
demonstrated in fig. C-4 to C-6, p is a function of a and . Thus A 15 a
function of both a and a.

**__EAa(t), the augmented plant parameter vector is given as [a(t), a(t) T.

It contains the time-varying elements in A,(t). The hat notation in eq. (38)
denotes the estimated value of EA (t) - (see Section 3 of this part, and
Appendix B). a
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Figure 10. Nominal Control Situations
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TABLE II

NOMINAL WEIGHTING FACTORS FOR PARTITIONED a - o« SPACE*

C.ontr'ol _5 C.ontr.ol -5 C.ontr.ol -5
Situation Px 10 Situation px 10 Situation Px 10
1 2.6216 31 0. 6050 61 1.4116
2 1.7112 32 0.2852 62 1.1408
3 1.2031 33 0.0388 63 1.1255
4 0. 8066 34 0.2017 64 1.2099
5 0. 4509 35 0.4509 65 1.3528
6 0.1040 36 0.7135 66 1.5368
7 0.2280 37 0.9909 67 1.7531
8 0. 5400 38 1.2834 68 1.9963
9 0. 8800 39 1.5909 69 2.2631
10 1. 2200 40 1.9131 70 2.5508
11 1. 9494 41 0.0672 71 2.0838
12 1.2358 42 0.1901 72 1.6161
13 0.8150 43 0. 3493 73 1.5136
14 0.4705 44 0.5378 74 1.5461
15 0.1503 45 0.7515 75 1.6534
16 0.1647 46 0.9879 76 1.8112
17 0. 4827 47 1.2449 77 2.0071
18 0. 8080 48 1.5210 78 2.2340
19 1. 1420 49 1.8149 79 2.4872
20 1.4300 50 2,1257 80 2.7634
21 1.2772 51 0. 7394 81 2.7560
22 0. 7605 52 0.6654 82 2.0914
23 0. 4269 53 0.7374 83 1.9017
24 0. 1344 54 0.8739 84 1.8822
25 0.1503 55 1.0522 85 1.9540
26 0. 4391 56 1.2624 86 2. 0856
27 0.7368 57 1.4990 87 2.2612
28 1. 0457 58 1.7587 88 2.4717
29 1. 3668 59 2.0390 89 2.7112
30 1.7006 60 2.3383 90 2.9759

*It was assumed that Py

(see Appendix C).

H:| <10-4 1b-ft | = 0. 96 in the design of P
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TABLE III

COMPONENTS OF NOMINAL FEEDBACK PARAMETER VECTOR,
FOR PARTITIONED a - « SPACE

Control
Situation Lambda (1) Lambda (2) Lambda (3)

1 0.5124157T7E 03 0.32012990E 02 0.10007569E 04
2 0.414066T72E 03 0.287773C8E 02 0.10009669E 04
3 0.34725755E 03 0.26353654E 02 0.10011329€ 04
4 0.28440732€ 03 0.23849835E 02 0.10012890E 04
5 0.21274444E 03 0.20627382E 02 0.10015031E 04
6 0.10238117€ 03 0.14309520E 02 0.10024892E 04
1 0.15139722€ 03 0.17400990E 02 0.10010523€ 04
8 0.23277934E 03 0.215768C9E 02 0.10001820E 04
9 0.29704821E 03 0.24374093E 02 0.99967864E 03
10 0.34968521€E 03 C.26445612E C2 0.99926999E 03
11 0.44182020€E 03 0.29726090E 02 0.10006524E 04
12 0.35183960E 03 0.26526952€ 02 0.10008534E 04
13 0.28578220E 03 0.23907413E 02 0.10010244E 04
14 0.21721033E 03 0.20842760E 02 0.10012219€E 04
15 0.12289727E 03 0.15677836E 02 0.10017799€E 04
16 0.12863585E 03 0.16039691F 02 0.10011468E 04
17 0.22000455E 03 0.20976394E 02 0.10002387E 04
18 0.28455357E 03 0.23855966E 02 0.99977802€ 03
19 0.33823504E 03 0.26009038E 02 0.99940665E 03
20 0.37845353E 03 0.27511944E 02 0.99904704E 03
21 0.35757940€ 03 0.26742453E 02 0.1C005277E 04
22 0.27597171E 03 0423493476E 02 0.10007252€E 04
23 0.20681568E 03 0.20337929E 02 0.10009287€ 04
24 0.11613119€ 0©3 0.15240157€ 02 0.10014169E 04
25 0.12279706E 03 0.15671443E 02 0.10009323€E 04
26 0.20974722E 03 0.20481564E 02 0.10001985E 04
27 0.27164067E 03 0.233C8396E 02 0.99980772€ 03
28 0.32357291E 03 0.25439061E 02 0.99948130€E 03
29 0.36990263E 03 0.27199362€ 02 0.99917414E 03
30 0.41258336E 03 0.28725715E 02 C.99887190E 03
31 0.246C6750E 03 0.22184116E 02 0.10003626E 04
32 0.16897868E 03 0.18383617E 02 0.10C05921E 04
33 0.62389726E 02 0.111TC472E 02 0.10014710E 04
34 0.14212116E ©3 0.16859488E 02 0.10004326E 04
35 0.21244408E 03 0.20612816E 02 C.10000485E 04
36 0.26721423E 03 0.23117709E 02 0.99976745€ 03
37 0.31488565E 03 0.25095245E 02 0.99950411€ 03
38 0.35834574E €3 0.267TT71094E 02 0.99924097€ 03
39 0.39896089€ 03 0.28247509E 02 0.99897253E 03
40 0.43748999E 03 0.29580061E 02 0.99869679E 03
41 0.81975605E 02 C.12804343E 02 0.99987989E 03
42 0.13787675E 03 0.16605828E 02 0.99999998E 03
43 0.18689569E 03 0.19333685E 02 0.99994592€ 03
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Table III (Page 2 of 2)

Control
Situation Lambda (1) Lambda (2) Lambda (3)
44 0.23190515€E 03 0.21536256E 02 0.99982427 03
45 0.27413500€ 03 0.23415166E 02 0.99966316E 03
46 0.31430876E C3 0.25072246E 02 0.99947442€ 03
47 0.35283140€ 03 0.26564314E 02 0.99926426E 03
48 0.390C0000E 03 0.27928480E 02 0.99903640E 03
49 0.42601643E (3 0.29189602€ 02 0.99879330€ 03
50 0.461C5314E 03 0.303662C3E 02 0.99853682E 03
51 0.27181912E 03 0.23316051€ 02 0.99959890E 03
52 2.25785350€ 03 0.22709183€E 02 N.99961232E 03
53 0.27145111€ 03 0.23300262€ 02 0.99959142E 03
54 0.29551801€E 03 0.24311232E 02 0.99951856€ 03
55 0.32427634E 03 0.2546669TE Q2 0.99940030E 03
56 0.35520270€ 03 0.26653431E 02 0.99924593E 03
57 0.38706923E 03 0.27823344E 02 0.99906293E 03
58 0+.41926858E 03 0.28957506E 02 0.99885672E 03
59 0.45145288E 03 0.30048390FE 02 0.99863111E 03
60 0.48345972E 03 0.31095328E G2 0.99833892€ 03
61 0.37551271€ 03 C.27404843E 02 0.99944512€E 03
62 0.33755737€ 03 0.25982970E 02 0.99940784E 03
63 0.33528478E 03 0.25895358E 02 0.99936919€ 03
64 0.34763622E 03 0.26368019€ 02 0.99929948€ 032
65 0.36760435€ 03 0.27114732€E 02 0.99919390E 03
66 0.391820G46E 03 0.27993587E 02 0.999055C7E 03
67 0.41850042€ 03 0.2893C967E 02 0.9988874TE 03
68 0.4465997T7€ 03 0.29886444E 02 0.99869533E 03
65 0.47552055E 03 0.30838954E 02 0.99848225E 03
70 0.50485449€E 03 0.31775918€E 02 0.99825098E 03
71 0.45618668E 03 0.30205518E 02 0.99932536E 03
72 0.40170757E 03 0.28344579E €2 0.99925373€ 03
73 0.38875024E 03 0.27883695E 02 0.99919745E 03
T4 0.39290489E 03 C.28032299€ 02 0.99912289:t 03
15 0.4C632C32E 03 0.28506853E 02 0.99902048% 03
76 0.42528206E 03 0.29164432E 02 0.99638908E 03
17 0.44770679E 03 0.29923462E 02 0.99873065E 03
78 0.47235218€ 03 0.30736C43€E 02 0.99854807E 03
79 0.49841845E 03 0.31572724E 02 0.99834418E 03
80 0.52538059E 03 0.32415447€ 02 0.99812145€ 03
81 0.52457634E 03 0.32390626E 02 0.99922382€ 03
82 D0.45691844E 03 0.30229735€E 02 0.99912533€E 03
83 0.43568504E 03 0.29518978E 02 0.99905342E 03
84 0.43344347€ (O3 0.29442944FE 02 0.99897194E 03
85 0.44164090E 03 0.29720G57€ 02 0.99886892E 03
86 0.45628387E 03 0.30208736E 02 0.99874088€ C3
87 0.47512093€ 03 0.30825993E 02 0.99858805E 03
88 0.49676210€ 03 0.3152C219€ 02 0.99841206E 03
89 0.52029199E 03 0.32258084E 02 0.99821500€ 03
90 0.54511824E 03 0.33018729€E 02 0.99799901€E 03
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Figure 11. System Simulation for Nominal Control Study

3. Every T units of time, « (t) is checked in order to determine whether
the system is in the same control situation. If it is in the same
situation, no changes are made in the control gains; on the other
hand, if it is in a different control situation the control gains are
changed according to Table III.

The first assumption allows concentration on the system without the
state estimator. The assumption is made since, in a simulation, all signals
are available. It is not necessary to estimate the augmented plant param-
eters a(t) and o(t), by virtue of the second assumption. a, which varies very
very slowly, is fixed for each run, while «(t) is generated by means of a
digital function generator (program). The third assumption provides the
rule for updating the nominal controls in order to account for the time-varying
nature of the system. It provides the nominal controller with the adaptivity
referred to previously.

Five experiments were performed; the experiments are summarized in
Table IV. The first four were concerned with the effects of different varia-
tions and rates of variations in a(t) on the attitude error; the fifth was
concerned with the effects of poor a priori knowledge about the disturbance
torques on the attitude error. Each experiment was performed for the
following five values of the plant parameter a: a = 0.40, 0.20, 0, -0.20
and -0.40. (For a = 0.40 and 0. 20 the open-loop system. that is, the system
where P[\t 4 0, is stable; for a = 0, -0.20 and -0. 40 the open-loop system
is unstable. )
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The attitude error results for each experiment are summarized in fig. 14
to 18, respectively. In every experiment the system performs better for the
more stable open-loop system. The poorest attitude error time histories
occur for a = -0. 40; the best histories occur for a = 0. 40. The results for
the first four experiments are very similar. The experiments show that,
regardless of how «(t) varies (continuously or discontinuously) or whether
a(t) varies slowly or quickly (0.2w rad/sec to 2m rad/sec), attitude errors
are contained for values of a >0. On the other hand, for values of a <0 the
attitude error may exceed +0. 20 arcsec over isolated intervals of time; how-
ever, the excursions from +0.2 arcsec never exceed £0. 5 arcsec. In many
cases the interval of time was very short, the largest being about 0. 7 units
of time. The overall conclusion is that the nominal controller performs well
under the action of different types of @'s provided the on-line probability*
agrees with the off-line probability that lo| = 10-4 1b-ft.

1f, on the other hand, the on-line probability differs from the off-line
probability thatlll < 10-4 1lb-ft, attitude errors may exceed 0. 20 arcsec

for long periods of time (if not for 2all values of time). This is demonstrated
in fig. 18, for Experiment 5, where the on-line probability that | £ |510'41b—f1:.
was assumed to be 0.10. It is clear from fig. 18 that xl(t) does indeed
exceed £0. 97 x 10-© radians for large intervals of time. It is worthwhile
noting, however, that in the worst case (when a = -0.40) | x,| never exceeds
4 arcsec, and in the better cases (when a > 0)|x; | never exceeds 1.5 arcsec.

It is of interest to observe the time-varying behavior of the components
of the feedback gain vector. Observe, from fig. 11, that

w¥(t) = B (0%, () = kZO Py, 4, (t-kT)x_(1) (39)

where _I_DAI is the feedback parameter vector associated with the 20 control
situation. %%

P (t) is seen, from eq. (39), to be a piecewise-constant function of time.
Typical variations for each of the components of Pp (t) are depicted in figs. 19,
20 and 21. The functionsXj(t), Ap(t) and \3(t) are shown for only one period in
the variation of a(t); however, since aft) is periodic, \j(t), A2(t) and A\3(t) are
also periodic, each with the same period as a(t).

In general, Py (t) is stepped to values which depend on the magnitudes
of a and a(t), the Trate at which of(t) varies and the decision time T (see
fig. 11). Py (t), quite obviously, is different for different choices of the
decision time. From figs 19, 20, and 21 it must be noted that the compo-
nents of P, (t), in most cases, look like zero-order approximations to
sinusoidal- or rectified-sinusoidal-type functions (unequal lobes).

*See third footnote under Table IV.
#*If the feedback gains were fixed (perhaps at some average values) then,
according to the preceding sensitivity analysis, attitude errors would
exceed #0. 20 arcsec.
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The optimal control u"2‘(t) is also depicted on figs. 19, 20, and 21.
Observe that after a short initial time-interval u;(t) becomes quite random.
This is expected, since

wy(1) = Ag(t) £(1) (40)

if the system is performing satisfactorily, that is, drivin%< attitude errors
to within 0. 20 arcsec. Note also that if g(t) is bounded u; will also be
bounded.

A typical phase-plane plot is depicted in fig. 22. The four plots depict
the trajectory of X;as a function of x| for the following: (a) 0 st =0. 20,
(b) 0.22 =t =0.44, (c) 0.46=<t=0. 80, and (d) 0.82 =t =1.72. Different
scales are used for X (t) and x,(t) on each plot. The predicted limit cycle
behavior is evident from (d) in fig. 22. It must be observed that for 0.82 =t
< 1.72 the limit cycle is contained to within 0. 97 x 10-° radians for x; (t),
as desired. From fig. 14(a), which presents [xl(t)] for the case depicted
in fig. 22, one observes that for 2<t<2. 7 and 3<t<3. 7 [x(t) |>0. 97 x 10-6;
hence, for these intervals of time the limit cycle in (d) would exceed
+0. 20 arcsec.

Summary and Conclusions

An adaptive controller has been designed. It is designated nominal
controller, since all of the available information about the plant and its
environment has been incorporated into the design. The design proceeded
in three steps: (1) for fixed values of plant parameters, nominal gains were
obtained using stochastic optimal-control theory; (2) for specific ranges of
the plant parameters, which were denoted control situations, nominal gains
were obtained using the results from Step (1) and sensitivity analyses; and
(3) for the controller designed in Step (2), simulations were performed in
order to observe the effects of some of the assumptions made during the
design on the attitude error.

Although parameters and states were not estimated during these
simulations, the following were observed: (l) a time -varying disturbance
parameter [a= a(t)] degrades attitude error more when the open-loop system
is unstable than when it is stable and, in both cases, the degradation is not
very appreciable; and (2) disturbance levels greater than those anticipated
during the design of the nominal controller may cause attitude errors to
exceed +0. 20 arcsec, depending upon whether or not the open-loop system
is stable or unstable.

The effects of different types of estimation errors on the attitude error,
as controlled by the nominal controller designed in this section, are
discussed in Section 3.
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The nominal control system serves two purposes in relation to the on-
line-learning control system shown in fig. 3. First, it is used as a system
with which the performance of the on-line -learning control system may be
compared, and a comparison of this type is important if the on-line-learning
control system is to be judged fairly. Second, simulations of the system
under the control of the nominal controller point up the reasons, if any, for
wanting to include an on-line-learning capability. Hence, the nominal con-
troller not only serves to provide the justifications for on-line-learning, but
also provides a reference for statements made about the performance of the
on-line -learning control system.

.



Section 3
STATE AND PARAMETER ESTIMATION FOR CONTROL

Introduction

It was mentioned in Section 1 and discussed in Section 2 that estimates of
the three*states x)(t), x5(t), and §(t) are needed in order to implement the
control u™(t) (see Tig. 3). It was also pointed out in those sections that
estimates of the plant parameters, a(t) and «(t) are needed for the following
reasons: (l) to provide the initial choice for w¥(t) in fig. 3, since the
nominal control is prestored for different regions in the a-o space (nominal
control situations), and (2) to implement a control situation concept which is
utilized during on-line learning (discussed in section 4).

A technique for estimating the three states and two parameters simul-
taneously is described in Appendix B. This technique represents an extension
of Kalman filtering to the combined estimation problem, that is, the problem
of estimating states and parameters simultaneously. It results in a non-
linear estimator.

The purpose of the present section is twofold. First, results are pre-
sented in connection with our specific combined estimation problem, followed
by a description of the experiments and results for the system under the action
of the nominal controller that was designed in the preceding section but with
the loop closed around the filter instead of the plant.

Combined Estimation

The structure of the combined state and parameter estimator is depicted
in fig. B-2 (at this point it is recommended that Appendix B be read in its
entirety). For convenience, the equations which describe the estimator are
summarized below, since many of them are referred to throughout this
paragraph.

Summary of filter equations is as follows:

§ ) = K') [z (@) - M* @fn-1)] (41)

4 (@mn) = §(mn-1) + §_ (@fn) (42)

717
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4 (n+lln) = @(n+l,n) § (ajn) + A (n+l,n) u (n) (43)
K¥m) = P (nln-l)M*T[M*p(n|n-1)M*T + Rd]’l (44)

P (a|n) = P (n|n-1) - K (n) M'P (n|n-1) (45)
P (n+lln) = & (a+l,n) P (n|n) @* T (n+l,n) % C (46)

d

where M*, ® (n+l,n), A (n+l,n) and <I>* (n+l, n) are defined in eqs. (B42),
(B36), (B37) and (B38), respectively. In addition, the discrete measurement
noise covariance, Rd’ and the discrete disturbance noise covariance, Cd’
are as follows:

r,. T 0 r 0
R. = RT = 11°s A dll (47)
d s 0 r..T 0 r

227 s dz22

00 O 0 0 00 O 0 0

00 0 0 0 00 O 0 0
C, = CT 0 0 VT 0 0 a 00V 0 0 (48)
d s s d

00 0 T, 0 00 0 py, O

If the noise and disturbance covariances are known a priori then the
filter in fig. B-2 is the optimal filter, since the covariances called for in
the derivation of the optimal filter are the true ones. In the present
application, however, measurement noise-levels were not prespecified
and the disturbance noise-levels which appear in the equation for PA (t)
[eq. (B17)] were not fixed ahead of time. The only noise level
which is fixed, in a certain sense (as discussed in Appendix C) is the
disturbance torque noise-level. The approach adopted was to consider the
four covariances r , rdZZ’ p.d and Pg22 28 design parameters for the
combined estimator; hence, }1]lter is no optimal in the derived sense,
it is sub-optimal in a design sense.

_ In order to differentiate the sub-optimal and optimal filters, let R; and
C, be the design covariances, whereas R, and C, are the true (but unknown)
covariances. For the 1atter covariances K*(n) 1s as defined in eq. (44),
whereas for the former K™ (n) becomes K (n), a sub-optimal gain.




It is also possible to view the disturbance covariance, V,, as a design
parameter, initially, even though it is known. This is a result of the following
theorem, the proof of which is found in ref. 1.

Theorem. -- The Kalman filter is not dependent on the absolute values
of the disturbance and measurement noise-levels, but only on the ratio of the
two. For example,

_—% = = —k _ —
K (n;Rd, Cd) = K (n;cRd, ch) (49)

where c is an arbitrary positive constant.

The overall approach to the design of a working estimator was to first
design a sub-optimal state estimator and then to design the combined esti-
mator. The parameters a(t) and o(t) were frozen and were assumed known
during the design of the sub-optimal state estimator. The covariances
r and r obtained during this design were then fixed during the design of

dl X d%Z . = - . - .
the combined estimator; Ha11 and By Were varied during the latter design.

Good results were obtained for the state estimator, even though an
uncontrollable state [£(t)] was estimated; however, it was not possible to
obtain satisfactory estimates of a(t) and o (t) using the combined estimator.
The design of and some experimental results for the sub-optimal state
estimator are described below. Some analytical as well as experimental
reasons why the combined estimator failed to provide satisfactory parameter
estimates are also discussed below.

*®
State Estimation. -- The following steps were performed as part of
the design of the sub-optimal state estimator:

(1) V, was set equal to V, and the elements of R, were varied until good
estimates for x(t) an% x,(t) were obtained [r%gardless of the quality
of the estimates of £ (t)].

R . was fixed from the results of Step 1 and Vd
esdtimates for all three states were obtained.

(2)

was varied until good

(3) V, from Step 2 was scaled to the actual V4 and, as a result of the
theorem stated in the preceding paragraph Rd was similarly
scaled.

*The filter infig. B-2 reduces to a state estimator when ug;) and pgp, are both
set equal to zero, and when Yl and Y, in egs. (B29) and(B30) are also set
equal to zero.
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Fifty-eight different filters were designed. NASA requested an informal
tabulation of the qualities of each design, those that were failures as well as
those that were successes. This information has been transmitted to NASA
and is not included in the present report. The values of T and T which

- o dll d2z2
resulted from this study are

_ -6
Ty C 7.70 x 10 (50a)
- -12
¥y, = 7-70% 10 (50b)
In addition,
v, o= 3.84x 10°42 (50c)

During the design of the sub-optimal state estimator, decisions were
made concerning the relative qualities of the 58 different designs. These
decisions were made, for the most part, by observing the data output from
the IBM 7094 simulation. The data consisted of the actual states, estimated
states, estimation errors, and percent estimation errors; the data was printed
out every 0.0l units of time [ T_ in eqs. (47) and (48) was 0.001 in these
designs] during each unit of titne. At the time that the Final Report was
written, a concise way of summarizing the performance of each filter was
discovered. It is especially useful for making decisions concerning the
relative qualities of different filters, and is discussed, briefly, next.

First, the percent estimation errors for attitude, rate, and E(t) are
plotted as, for example, in fig. 23 for Filter 57. The covariances of Filter
57 are those given in eq. (50a,b, c). The discontinuous nature of these plots
is due to the fact that the percent estimation error grows large when the
actual function passes through zero (changes sign). Next, the cumulative time
for which the percent error is contained within a specific range is plotted,
as, for example, in fig. 24. The cumulative frequency function (which is an
approximation of the probability distribution for | percent estimation error|)
provides a concise means for comparing the different estimates from a single
filter, and, in addition, provides a concise means for comparing estimates
from different filters (fig. 25).

In fig. 24, observe that Filter 57 estimates x;(t) and x5 (t) about the same,
whereas it estimates £ (t) much better. For example, 20%-or-less estimation
errors occur 90% of the time for £ (t) while they occur only 66% and 69% of the
time for x; (t) and x;,(t), respectively. It is also interesting that such similar
plots occur for the cumulative frequencies associated with percent estimation
errors for xl(t), x,(t), and £(t), as compared with the rather diverse percent
estimation error plots in fig. 23.

*a and a were set equal to 0.40 and -0.80, respectively, during the study.
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Three different filters are compared in fig. 25. During the design, each
one of these filters was judged good; however, Filters 56 and 57 were judged
better than Filter 54. Observe that for values of|percent attitude - estimation
error | less than 10% this judgement is wrong; Filter 54 is better than the
other two filters. A wrong judgement occurs also for values of | percent
attitude - estimation error | between 45 and 50%. On the other hand, the
judgement is correct for values of | percent attitude - estimation error |
between 15 and 40% ; hence, for large ranges of | percent attitude - estimation
error | the cumulative frequency plots substantiate earlier judgements
regarding the relative qualities of different filters.

State and Parameter Estimation. -- The combined estimator depicted
in fig. B-2was simulated on the IBM 7094. The covariances in eq. (50)were
used during this study; different experiments were performed in an effort to
choose values for Bg11 and H422 in eq. (48).

In one experiment o« was assumed known* and a was estimated. In
another experiment a was assumed known** and o was estimated. The values
of Mg11 and yp, Were varied over wide ranges during these experiments
(n 1110 the first experiment and p in the second experiment); however,
esc%lrnates for a and ¢ were not achieved!. Some results from the experiment
in which a was estimated are summarized in fig. 26. For each run (identified
by a different filter number) the actual value of a was 0.40 and the initial
estimate of a was chosen to be 0.30. For very small values of K41 the
steady-state estimate, ) , did not differ from the initial estimate. For
larger values of u , héwéver, the steady-state estimate was worse than
the initial estimate. Time did not permit a more extensive study; one, for
example, in which the effects of different initial estimates on the steady-state
estimate are studied (since the combined estimator is nonlinear, initial
conditions are important).

It was also observed that, regardless of how poorly the filter estimated
a(t) and a(t), it still estimated xl(t), x.(t) and £(t) relatively well. This
suggests that the state estimator is relatively insensitive to a and @. That
this is indeed the case was demonstrated in an experiment during which
wrong values for a and @ were used in the state estimator. Some results
from this experiment are tabulated in Table V for attitude errors. Similar
results were obtained, in each case, for xz(t) and £ (t).

x
Hgzp Was set equal to zero.

%
By vas set equal to zero.

TYl(t) and Yz(t), in eq. (Bl7)were set equal to zero during these experiments.
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The reason for this insensitivity is that a(t) and a(t) are very small com-
pared to the feedback gains Ay, A, and A3; hence, the closed-loop response
is insensitive to variations in a and @. This can also be verified, in part,
analytically. For example, &(nln) in eq. (42) can be written as

4 (nln) = K¥mn)z(n) + [I-I_{*(n)M*.].
[<I> (n,n-1) + A (n,n-1) A*] é(n-l]n-l). (51)

Eq. (51) follows from eqs. (41) and (43) and the fact that

u (n) A*§ (n-1|n-1) (52)

where

A*

()\1, A )»3, 0, 0). (53)

It is relatively straightforward to show that in the matrix
®(n,n-1) + A (n,n-1) A*

the terms due to Q(n-lln—l) and & (n-1|n-1) are negligible compared with the
terms due to A¥, which substantiates the above conjecture.

The fact that the combined estimator did not provide estimates for a(t)
and a(t) in this case does not mean that the estimator cannot be used in other
applications. This estimator was used with success by Waymeyer, et al in
ref. 1, and is currently being used with success at Douglas in connection
with an adaptive controller for a maneuverable re-entry vehicle. In both
of these applications, however, the estimated parameters are either of the
same order of magnitude or larger than the feedback gains.

Nominal Controller Simulation -Studies

In this subsection (which is a continuation of the Simulation Studies in
Section 2),the performance of the system under the action of the nominal
controller is, once again, investigated. The main difference between the
simulations described below and those described in Section 2 is, however,
that here the loop is closed around the output of the state estimator (des-
cribed in the preceding subsection), whereas in Section 2 the loop was closed
around the plant. The experiments that are described below were performed
in order to observe the effects of the following on the attitude errors:
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(1) State-estimation errors.
(2) State-estimation errors and parameter-mismatch errors.

Seven experiments were performed; they are summarized in Table VI.

The first four were concerned with the effects of state-estimation errors on
the attitude error. The simulated system for these experiments is depicted
in fig. 27 (compare with fig. 11). The last three experiments were concerned
with the combined effects of state- and parameter-estimation errors. Since it
was not possible to obtain estimates for a(t) and eft) using the combined esti-
mator described in the preceding subsection, and since time did not permit
other means for estimating the parameters to be studied, pseudo-estimation
errors were assumed. The simulated system for these experiments is depic-

ted in fig. 28.

Observe the difference between figs. 27 and 28. In fig. 28 the actual
plant parameters are both corrupted in some statistical fashion. The corrup-
ted plant parameter vector, or, pseudo-estimated plant parameter vector,

Iy
denoted P , (t[t), is
a

Al ~l
By (tlt) = By (t) + B, (t), (54)
a a a

~1
where P (t) is a (2x1) pseudo-estimation error vector. In Experiments 10
a

~ L
and 11 the components of P A (t) are uniformly and normally distributed,
a ,
respectively. In these experiments

~ 1

E gA(t)l=g.
a

The density functions for the two distributions are depicted in fig. 29. In

~ %
Experiment 12 the components of P A (t) are normally distributed and

E

P, (t)l;eg.
a

Both the interval of the uniformly distributed error and the variance of

the normally distributed error were chosen so that (Q', &' )T could lie in a
control situation different from the one in which the actual parameters are
in. For example, if a = o and @ = -0. 50, so that the plant is really in control
situation 45 (fig. 10), (3', 3 )T may be in either control situation 45, 44, 46,

oy |
54, 55, 56, 34, 35, or 36 (assuming that E { EA (t)} = 0).
a
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Figure 28. System Simulation for Nominal Control Study--Loop Closed
Around Filter and Parameters Mismatched
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In Experiments 6 to 9 the actual plant parameters (generated) are utilized
in both the Kalman filter and the mechanism for updating the control gains.
In Experiments 10 to 12, on the other hand, corrupted (mismatched) plant
parameters are utilized in both of these places, as would occur if a(t) and
a(t) were actually estimated.

The attitude error results for Experiment 6 are summarized in fig. 30
(the results for Experiment 7, which differs from Experiment 6 in that a
small amount of measurement noise is introduced in the former, are omitted,
since they are similar to the results in fig. 30). These results should be
compared with those in fig. 14. Apparently, state estimation-errors degrade
attitude error by from one to two orders of magnitude. This represents the
effect of neglecting the estimation errors during the design of the weighting
factor, p, in Appendix C [eq. (C13)].

In Section 2, it was shown that, for the system with the loop closed around
the plant, u (t)—> A (t) £ (t) after a short initial transient. For the system with

the loop closed around the filter this approximation is no longer valid, due to
estimation errors. In the random- 11m1t cycle mode, u *(t) is proportmnal not

only to é (tlt) but also to x1 (tlt), and x2 (t|t), since x1 (tlt), X, (t|t) and §(t‘t)
each settle to the same order of magnitude.

The next few paragraphs shall distinguish between the \nominal control
with the loop closed around the plant, ugp(t), and the nominal control with
the loop closed around the filter, u;F(t)' It shall be shown, for a typical
case, that the control error signal (u;‘F—uzp) does indeed degrade attitude
error from an order of magnitude of 107° radians to an order of magnitude

of about 10-5 radians; that is to say, this section will demonstrate that
(u;F—u;p) leads to an attitude error of approximately 10-5 -10-6 = 0.000009

radians.
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The functions u;F and u;P are plotted in fig. 31 for the case when the

. . *
open-loop system is a double integrator. u,p was obtained from a simulation
of the system in fig. 11, whereas U, Was obtained from a simulation of the

system in fig. 27. The initial conditions, integration times, and random

sequences used in both simulations were identical. Observe the close simi-
* *
larity between U and up and observe, also, the small amplitude and oscil-

latory behavior of the control error signal, which is also plotted in fig. 31.
£ £
In order to demonstrate that (uZF— uZP) leads to an attitude error

degradation of 9 x 10—6 radians, it is first approximated asT

(u u:P)~:|':O. 005 sin [27 (3. 5)t]. (55)

%
2F

. . % *
Denoting the component of the attitude error due to (u,.—u,) as x ,
. 2F 2P 1FP
it follows that

. 2
X pp~ * ffo.oos sin 21. 987 dr (56)

x ~ £10.35 x 107° sin 21. 98t. (57)

1FP

The close agreement between the amplitude of x in eq. (57) and the attitude

-6 1FP
error degradation of 9 x 10 ~ radians must be noted.

Experiments 8 and 9 represent disturbance and measurement-noise level
sensitivity studies, respectively, and are closely related. The purpose of
Experiment 8 was to determine the disturbance level for which attitude errors
are just contained to within *0. 20 arcsec, with the loop closed around the
filter. As expected, by lowering the disturbance noise level [V = 0.48 x 10-8,

0.48 x 10-10, 0.48 x 10_14 and 0.48 x 10_l correspond to disturbances of the

order of magnitude of 10-4, 1073, 107 and 1077 1b-ft. , respectively] it is
possible to contain attitude errors, even though state-estimation errors exist
(fig. 32). The disturbance noise level for which attitude errors just begin to
remain within #0. 20 arcsec is between 0.48 x 10710 and 0.48 x 10-14. A value
of V = 0.48 x 10-12 was assumed for Experiment 9, the purpose of which was

to determine how much measurement noise could be introduced before attitude
errors would once again become greater in magnitude than 0. 20 arcsec.

TThe frequency of 3.5 cps was obtained by counting the number of positive
peaks of (ugF_u:ZkP) in fig. 31, and dividing this number by 5 units of time.

The amplitude of 0. 005 is an average value.
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As the measurement noise level increased, it was observed that the
estimates of X xZ, and ¢ became poorer. This was especially true for the

estimates of £, which were wrong by from three to four orders of magnitude
when 14, = Tgqy5 = 10" °. In this case, the control was much larger than it

-10 -14 .
was when Tq11 = Tg22 = 10 r 10 , larger by two orders of magnitude.

The measurement noise level for which attitude errors just begin to exceed

£0. 20 arcsec is seen in fig. 33 to be between 10~ -10 and 10 -14

The results for Experiment 10 are summarized in fig. 34. Due to the
close similarity between the results obtained for Experiment 11 and those in
fig. 34, the results for that experiment are omitted. Observe that zero
mean parameter mismatches do not further degrade attitude errors from

the degradation incurred by closing ing the loop around the filter. ‘The purpose

of Experiment 12 was to investigate the effect of non zero-mean parameter
mismatches on the attitude errors. Some results from this experiment are
depicted in fig. 35a. Note that even with fairly large parameter mismatches
a further degradation in attitude error does not occur. Apparently, Ix (t)]

is rather insensitive to variations in a(t) and a(t). An interesting experi-
ment whith would point up the effects of parameter mismatch (as distinguished
from Experiment 12, where the effects of parameter mismatch and state-
estimation errors are blended), is one in which the loop is closed around the
plant, as in fig. 11, and various non zero-mean normally-distributed pseudo
parameter-estimation errors are introduced. Time did not permit this
experiment to be performed, however.

Due to the randomness of the plant parameter pseudo-estimation errors,
the nominal feedback gains )\l(t), Xz(t) and )\3(1:) in Experiments 10 to 12 are

nonperiodic random sequences. This is illustrated in fig. 35b and 35c for

Experiments 10 and 11, respectively. In Experiments 6 to 9, on the other

hand, the feedback gains are periodic [with period equal to that of a(t)] and
vary exactly the same as the gains in Experiment 1 (figs. 19, 20 and 21 for
example).

Summary and Conclusions

A state estimator, for use in the nominal controller, has been designed.
It is sub-optimal, since the covariances which are used by the estimator do
not correspond, in general, to the true noise and disturbance covariances
(unknowns in this study). The state estimator was shown to be relatively
insensitive to variations in a(t) and a(t), because of the largeness of the
feedback gains as compared to the smallness of a(t) and a(t). Due to this

insensitivity, it was not possible to obtain estimates of a(t) and o(t) from
the combined estimator.
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Simulations involving the nominal controller, in which the loop was
closed around the output of the state estimator, were performed. The
simulations demonstrated that: (1) attitude errors are degraded by between
one and twn orders of magnitude due to state-estimation errors when
disturbance torques are of the order of magnitude of 10-4 1b -ft ; (2) if
disturbance torques are only of the order of magnitude of 10-61b-ft, attitude
errors will remain less than %0 20 arcsec, even though estimation
errors occur (provided measurement-noise level is small); (3) large
measurement-noise levels degrade attitude errors further; and (4) attitude
errors are not degraded further when parameter mismatch (uniformly or
normally distributed) occurs.

State-estimation errors can be compensated for during the design of the
nominal controller, since their presence and effect (on attitude error) can
now be anticipated, off-line. For example, since attitude errors are
degraded by between one and two orders of magnitude, ¢ in Appendix C
could be chosen [specifically in eqs. (C22), (C23) and (C26))to be between
one and two orders of magnitude smaller than 0.20 arcsec, its present
value. C; would then be larger; hence, the weighting factor associated with
a nominal control situation, p, would also be larger (in Section 2, P = C
for most of the nominal control situations). This means that the entries in
table III would be modified; a new adaptive nominal controller results. This
design modification remains to be verified,
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Section 4
AN ON-LINE LEARNING PROCEDURE

Introduction

It has been shown in the preceding sections that, if disturbance torques
exceed their a priori design amplitudes attitude errors may exceed
0. 20 arcsec. The overall objective is to achieve fine attitude control (see
Appendix A); hence, it may be necessary to modify the nominal controller
designed in Section 2 if that controller cannot contain attitude errors to within
#0. 20 arcsec. The system depicted in fig. 3 has been proposed for updating
the nominal controller, when and if modifications are necessary.

The present section is concerned with the following aspects of the on-
line-learning control system infig. 3: 1) on-line goal circuit, 2) on-line
learning algorithm, and 3) simulations of the overall system,

The on-line goal circuit processes measured data in the form of on-line
cost functions. The next subsection distinguishes between an overall perform-
ance index and a sub-goal performance index. The overall performance
index is related directly to the statement that attitude errors must be kept
to values less than or equal to #0. 20 arcsec. The sub-goal performance
index is related to the overall performance index through an average and is
used in the on-line learning algorithm,

The on-line learning algorithm is heuristic and error-correcting. Error-
correcting is used to mean that decisions to update the feedback gains are
made only if the present performance is worse than the preceding perform-
ance. Heuristic is used to mean that no convergence theorem is provided for
the algorithm. Control situations are utilized in the on-line learning proce-
dure. A distinction between off-line and on-line control situations is also
made in this section.

Three experiments involving the on-line-learning control system are
described in the subsection titled Simulation Studies. Their objectives are to
demonstrate the error-correction algorithm derived in the subsection titled
Error Correction Learning Procedure and to determine some of the design
parameters which enter into the algorithm. These experiments were per-
formed at the very end of the study and due to insufficient time are incomplete.
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On-Line Cost Functions

The overall objective is, as pointed out above, to contain attitude errors
to within #0. 20 arcsec. In connection with the laser communication
satellite application, it was not specified by NASA whether attitude errors
must be contained at every instant of time or over intervals of time, in an
absolute sense or in some probabilistic sense. Due to the stochastic nature
of the attitude errors, it was felt that it is more meaningful to look at the
behavior of attitude errors over an interval of time (T) rather than at discrete
values of t; hence, it was assumed that the overall objective is to contain
attitude errors in an absolute sense over fixed intervals of time.

In Section 1 a Basic Premise was stated in connection with the necessity
for on-line learning. It is, that for on-line learning to improve a system's
performance on-line, new information must be made available to an on-line
performance assessor, In this study it was assumed that the new informa-
tion is contained in the measured attitude error, z, (t); for, truly, the effects
of the actual disturbance torques are observable in zl(t).

It is desirable to weight positive and negative attitude errors alike; hence,
the cost functions discussed below, the squared measured attitude error,
(t), is used, since it is the simplest function of the measured attitude error

]hlch is never negative and thus does not have the disadvantage of having
positive attitude error contributions cancelled by negative attitude error
contributions,

The overall goal or performance index is denoted PI (k,2, m). It provides
the cost for havmg to iterate the control u¥®(t) in fig. 3 the mth time the £
control situation is re- entered It is assumed, first, that it is not very
likely that the iterations of u"‘(t) will be completed the first time the #1 control
situation is entered and, second, that the maximum number of iterations
associated with the first, second, ..., m"™, ..., etc. entries into the fth

control situation is kj, ky, ..., ks ..., etc., respectively. The expression
for PI (k, g; m) is

(k+1)T
L

Pl (k,f;m) = 22(k, g;t)dt (58)

where the special notation used for z is control situation oriented, and is
elaborated upon below.




In keeping with the overall objective of containing attitude errors in an
absolute sense over fixed intervals of time, the following theorem is proved
for the case when there is zero measurement noise. The more general
results are discussed in the final paragraph of this section.

Theorem

0 and PI (k, £;m) < 6(€), where 6&(¢) = 62'1', then

If nl(t)
lx(k, £5t)] < € for kT < t < (k+1)T andk = 0, 1,.

Proof: When nl(t) =0 zl(k, g;t) = xl(k, £;t) and

(k+1)T
ls

BT (k, ;m) = x %k, £it)at (59)

It is assumed that X is bounded during each interval of time; that is,
| xl(k,l;t)| < xl(k) for kT< t <(k+1)T (60)

The above assumption is felt to be reasonable for the application. It follows,
‘hat

Bi (k,4;m) < xf(k)T for kT < t < (k+1)T (61)

In eq. (61), if xl(k) = €, such that 6(€)& €2T, then in eq. (60)

|x(k, £t)] = € for KT < t<(k+1)T (62)
which completes the proof.

Due to large initial attitude errors, which may result from a poor initial
choice of u*(t), that is to say, a poor choice for P¥ (the nominal feedback
parameter vector associated with the £th control situation), it is probably
more useful to weight more recent observations of the performance index Pl
more heavily than older observations. To this end, the sub-goal performance
index PI(k,%;m), defined below, is used in the decision making procedure for
updating the on-line control gains, and not the overall goal. As is shown,
however, the control gains are modified only when the overall goal is violated.
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The sub-goal performance index is given recursively as

PI (kt1,45m) = YPL (c,2;m) + 422 BT (o1, gm) k= 0,1... (63)
where

PL (0,4;m) = 1 P (0,4;m) (64)
and

0 <7v= 1. (65)

From eqs (63) and (64), it is straightforward to show that

k

k _ - R

PI (kg5m) = L B (0.m) + L2 S % 81 G, pm) (66)
j=1

where 1 = k = k
m

It must be observed, that two observations of PI (j,#;m) made at j=q and
j=q+s are weighted, over any iteration interval kT <t< (k¥1)T, in the
following proportion:

(li:)’),yk—s-q /(1;)’) k-9 _ y8

By suitable choices for ¥, the appropriate emphasis may be placed on recent
and past observations. The name linear reinforcement averaging is associated
with the averaging process in eq. (66), when 0 <¥ < 1. When 7= 0

PI (k+l,¢;m) is proportional to PI (kt+1,4;m), and, wheny =1 PI (k+l,£;m} is
proportional only to the initial cost PI (0,£;m). In addition, if Y=1 - T&FZ)

then eq. (66) reduces to a standard averaging process. The term linear
reinforcement averaging is borrowed from the so-called linear reinforcement
learning model which is used in learning theory (ref. 2, for example). The
linear reinforcement learning model is of the same form as in eq. (66).
Discussions on suitable choices for Y are continued in the subsection titled
"Simulation Studies. "

Error-Correction Learning Procedure

On-Line-Optimal Feedback Gains. --In order to distinguish between the
nominal controller designed in Section 2 and the learning controller designed
in this section, the following notation and definitions must be introduced:




ot
.

u™(t) is the on-line-optimal control, and is initially equal to the
nominal control, u'z(t), designed in Section 2.

* A
ut(t) = Ax(t)x_(tlt) (67)
2. A*(t), the on-line-optimal feedback gain matrix, is a function of

which control situation the system is in; for the fth control
situation,

A% ) — A¥lt) . (68)

3. It is more convenient to work with the on-line-optimal feedback
parameter vector _I?XI(t) than with A*I(t); however,

T
<_PX1(t)> = pxd(t) (69)

from which it follows, that for the Ith control situation,
o - (pako) 4 70
u'(t) = | PxHt) X, (tlt) . (70)

4. In the on-line-learning procedure, discussed shortly, Eli“e(t) is
obtained iteratively. It is incremented once every T units of time.
The kth iterate of EXl(t) , I_Dxl(k;t) , is given as

k

PHlict) = 120 ;(i)U_l(t-iT) (71)

and is a piecewise continuous function as illustrated in fig. 36 for
one of the components of Exl(k;t) .

5. Since the on-line-optimal control is initially equal to the nominal
control,

m(0) = EI{ , (72)

where _13! denotes the nominal gains, designed in Section 2, for the
fth control situation.

In connection with these definitions, the following observations are made.
First, note that time variations in A *(t) occur in two distinct modes. A*(t)
varies according to eq. (71) for as long as the system remains in the 2th
control situation. Here the variations are due to the on-line optimizations
which are performed individually for each control situation. On the other
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hand, A*(t) also varies as the system moves from one control situation into
another. This movement is reflected as variations in the index £. The
second type of variation in the on-line-optimal feedback gain matrix is
identical to that observed for the nominal gains (figs. 19, 20, and 21, for
example). The first type of variation, on the other hand, represents a tran-
sient phenomenon which is associated with each control situation. It persists
until satisfactory performance is achieved for all points within the control
situation, at which time E*t (k;t) is constant and remains constant for all
time thereafter, unless thé performance of the system becomes unsatis-
factory once again.

Note, also, that since A* is a function of £, k, and t, X, is also a
function of these three parameters; hence, the measured attitude error,
z1(t), which is used in eq. (58), is also a function of £, k, and t; that
explains the notation used in eq. (58). This functional dependence of the
states on £ and k is used only for the purposes of clarification; otherwise,
the dependence is assumed.

On-Line-Learnins}TAIgorithm. --The ?n-line-learning procedure is
embodied in an algorithm for updating P*y (k;t) in eq. (71). The algorithm
relates the sub-goal performance index, discussed previously, to decisions
as to when and if P¥ (k;t) should be changed (updated). These changes occur
only if |x](t)|>0. 20 arcsec; hence, the learning algorithm is referred to

as an error-correction learning algorithm. The algorithm is described
below for the #th control situation.

The first time the 2P control situation is entered, m in eq. (66) is
unity, and the expression for the sub-goal performance index is

K T k GHT
PIGe, 51) = [ 22 (0, £;t)at + L2 vkl f 225, 2500t
0 j=1 T
k =0,1,..., k (73)

1

The system responds for the first T units of time under the action of the
nominal controller [eq. (72)]. The value of PI(0, £;1) is computed; however,
it serves merely as a reference value for the sub-goal performance index
during the next iteration interval. In the present error-correction algorithm,
there is no basis for a change in the feedback gains during the interval
T<t<2T.

For T<t<2T, px! (k;t) = ps! (1;t) & ps! (0;t); hence,
A —A A
u(l) = 0 (74)
The above ensures that the system operates under the action of the nominal

controller for the second T units of time as well as for the first T units of
time.
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The value of PI(1,£;1) is computed and compared with PI(0,8;1). If

PI(1,4;1) s PI(0,4;1) - €'(0), m(2)in eq., (71) is set equal to 0, which is
indicative of a satisfactory choice for P I(l ;t). On the other hand, if

PI(1,41) > PI(0,2;1) - €'(0), which is 1r{h1cative of a degradation in perfor-
mance, 7(2)is chosen different from 0. The exact rule for choosing m(2) is
deferred to a later discussion, so as not to break the continuity of the present
discussion. ¢€'(0) is a threshold function which is a design parameter and is
elaborated upon in the next subsection.

As k (and, subsequently, t) evolves, the on-line-optimal feedback
parameter vector in eq. (71) evolves, until, for k:k1

k)

—

" . _ . .
Pl it) = 1%0 7 ()U_ (t-iT) (75)

The system is assumed to leave the!th control situation at some instant of
time t', where kT < t' < (kj+1)T (fig. 37), at Whlch time the amplitude of
the on-line-optimal feedback parameter vector is PX (kl) where

<

Pxl(k)) = z x(i) (76)
A =0

This value is stored in a memory compartment whichlis associated with the
lth control situation for use as the first value of P*"(k;t) the second time the
2th control situation is entered.

At t=t' the measured attitude error is z) (k,,£;t'). The second time the
fth control situation is entered the initial (with respect to the second entry)
measured attitude error is not zj(ky,£;t'). This is due to variations in z
which occur while the system is in other control situations; hence, it is
meaningless to continue eq. (73) out past k] or to base decisions on choices
for m(i), the second time the #th control situation is entered, on PI(kj,£;1).
[Hill (Ref. 3), in a different context of course, carries over his performance
index from one entry into the £th control situation to another. As pointed out
by Mr. Frank Noonan (NASA), there is no guarantee that Hill's procedure for
updating his feedback gains will converge, due to the discontinuities which
occur from one entry to another.]

The second time the system enters into the lth control siutation m=2 in
eq. (66), and
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Figure 37. Amplitudes of On-Line-Optimal Feedback Parameter Vector During
First Entry into fth Control Situation
K T ) k G+1)T 2
PLOc8:2) = % [ 2% (0, 5t0ar + 1Y) > yk I ) (. 4;t)dt
0 j=1 jT
k=0,1,..., k, (77)
It is assumed that whatever the instant of time the lthcontrol situation is
re-entered is labeled as t=0. Iterations then proceed from 0to T, T to 2T,
-» and k2T to t", where t" is the time at which the system again leaves
the gth control situation [sz < t" <« (k2+1)T].
For 0 < t < T, BK‘ (k;t) = _%‘ (0;t) = EX‘ (k;) which, of course, is
available from the preceding entry. his is in contrast to the value chosen

for Pxd (0;t) the first time entry was made into the gth control situation,
which'was the nominal control P4, It is at this point that the learning con-
troller is utilizing the past expeTrience of the system in order to achieve
on-line learning. The algorithm for updating EW (k;t) on the second entry is
identical to the algorithm discussed above for updating _F_’*l (k;t) on the first
entry. It is worth mentioning again, that once again there is no basis for a
new decision during the interval of time T < t < 2T; hence, 2*1 (1;t) =
Bxt (0;t) = Pxb (k) - A
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For purposes of exposition, it is assumed that eventually the system will
enter and remain in the £tk control situation long enough for the attitude error
to be driven to values less than or equal to #0. 20 arcsec, as required. It is
assumed, for example, that this is achieved during the pth entry, for k=kp.
The amplitude of the on-line-optimal feedback parameter vector is, then,

kp
Pl ) = > ) (78)
i=0
where
7(0) = Bl ) (79a)
and w(1) = 0. (79b)

The feedback gain in eq. (7§) is associated with the lth contral situation;
henceforth, whenever the £ control situation is entered _1_21*} (k) is applied
and no further iterations are required unless, of course, PI, ngch is always
computed and monitored, exceeds 6(e). If PI > §4(€) attitude errors are
excessive and the on-line-optimal feedback parameter vector is once again
updated until attitude errors are driven to values less than or equal to

+0. 20 arcsec.

The Error-Correction Learning Algorithm is summarized in fig. 38.
Note that every 3T units of time the on-line optimizations are preceded by a
control situation check. The factor of 3, while quite arbitrary, does allow
at least two decisions to be made about the quality of the on-line-optimal
feedback parameter vector, per entry into a control situation.

In the next subsection discussions are presented on a number of topics
directly related to the Error-Correction Learning Algcrithm.

Topics Related to the Error-Correction Learning Algorithm. --This
subsection begins with a brief summary of the timing problem, that is the
problem of when states and parameter estimates are updated, when these
estimates are sampled for use in the on-line-learning procedure and when
the control gains are updated during the on-line-learning phase. A rule for
updating the control gain-change vector n(k+l) and the associated effects on
the learning algorithm are discussed in the subsection titled ""Updating the
Control Gains.' The time-varying threshold, e'(k), is discussed in the
subsection titled "Threshold Functions.' Finally, the possibility of and
reasons for distinguishing between on-line and off-line control situations
are discussed in the subsection titled ""Control Situations."

The Timing Problem: The relationships between the times at which esti-
mates of states and parameters are updated (using the estimator in fig. B-2),
on-line -optimal control gains are updated, and samples of the estimated plant
parameters are taken are depicted in fig. 39. The estimates of states and
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Figure 39. Timing Relationships

parameters are updated every Tg units of time, where Tg is some fractional
multiple of T, the decision interval. The estimated plant parameters are
sampled every 3T.

The decision interval should be chosen small enough, that

18, |m+3)Tin+3)T] -B, (TITI| = M (80)
a

=A
a

for n=0,3,6..., where M is related to the size of a square control situation
(fig. 8b). This means that the on-line optimization interval, 3T, should not
be sc large that on-line optimizations are assumed to be in progress for one
control situation when in reality they are in progress for another (due to the
system moving out of the first control situation, during 3T, by an appreciable
amount). Eq. (80) provides a means for bounding the decision interval, from
abov

Updating the Control Gains: Numerous possibilities exist for updating the
on-line-optimal feedback parameter vector. The procedure described below
is intimately connected with the error-correction technique. Two other pro-
cedures are described in Appendices E and F. Both of these procedures
result in reinforcement-type learning algorithms in that the feedback gains
are updated not only when the overall performance deteriorates but also when
performance improves. The stochastic automata approach, described in
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Appendix E, while interesting, does not appear to be applicable to this
problem. The adaptive, random-optimization approach, described in
Appendix F, may be applicable; however, time did not permit the algorithm
described in that appendix to be simulated.

The rest of this subsection is concerned with a specific rule for updating
the control gain-change vector w(k+1l) in eq. (71), since

Plan = PRl + o) k=l (81)

which follows from eq. (71). It is not necessary to obtain m(0) and w(1),
since they are both known a priori, as discussed previously in this section
feas. (79a)and(79b)l.

Here n(kt+1l) is updated according to the following rule:

n(k+l) = [Xé(h,lﬁ]g(k) k=1,2,... (82)

y(k) is a decision function which takes on the values of zero or unity
according to the following rule:

0 if PI(k,2;m) > PI(k-1,&;m) - ¢ (k)
y(k) = (83)
1 if PI(k,2;m) < PI(k-1,4;m) - ¢ (k)
for k=1,2,... .

f(T) is a weighting function, defined as

f(T) = 1 + [Number of successive intervals for which y(k) = 1] (84)
p(k) is a vector which is proportional to Bxl(k); that is,

PI(k,2;m)-PI

SE e . i=1,2, 3 (85)
A, (k)- X,
1 1

pi(k)= Cl)\:‘!(k) sgn




where:

C] is a proportionality constant which is a design parameter:k

2

?"i is the most recent value of )\*{ that is different from )\;u(k), and

Pl is the last measured value of PI for which xf“:'.‘ii (i=1, 2, 3)
Some observations are in order at this point.

When y(k) is unity m(k+1) =0, as required in the Error-Correction
Learning Algorithm. When this case occurs it is not necessary to compute
£(T) and B (k); hence, these computations are bypassed when y(k) = 1.

f(T) is a weighting function that causes T (ktl) to be updated by a smaller
amount the longer the overall performance of the system continues to
improve. In the worst case, when a choice for w(k+1) does not lead to
immediately improved performance, f(T) is unity.

B may be viewed as a pseudo-gradient. Directional information is
provided by the argument of the signum function. The numerator of this
argument is negative if the performance for the present control choice is
better than the performance for the preceding control choice; it is positive
if the performance for the present control choice is worse than the
performance for thflpreceding choice. Magnitude information is provided
bx the product Ci\{ " (k) which is interpreted as a fractional change in
)\il(k). Choices for C] are discussed in the subsection titled "Experiment A'',

The nature of the on-line optimization procedure is depicted in fig. 40.
for one component of BA (k). In connection with )‘i and PI, the following
assun.ptions are made:

1. ?"i is initially equal to zero (i=1l, 2, 3),

2. 131 is initially equal to PI(0,£;m) when a control situation is entered
for the first time or is re-entered.

Observe, in fig. 40, that eq. (82) provides a capability for either
increasing or decreasing the preceding control choice. Four changes in
)\ll(k) are illustrated in that figure (indicated by numbers), one
eachat k = 2, 3, 9 and 10. In connection with these (and other) changes in
a_component of B*I(k) a more detailed discussion of the rule for updating
A] *from the kthto the (k+1)5t iteration is now in order.

*In the most general case, C, would be different for each component of B.
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Pl (k, ¢; m)

(k+1)

Figure 40. Optimization Trajectory
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)\’f‘e(k) changes only when y(k) = 0 in eq. (82), in which case it follows,
from eqs. (81), (82), and(85), that

C ”~
A = 1 - f,i,)sgn L)I(Ef;m) ;PI] A Ak) (86)
e P
k=1,2,... .

Now, y(k) = 0 in either of the following ways:

1. PI(k,&;m) > PI(k-1,8;m) - ¢(k) and (87)
PI(k,#;m) < PI(k-1,2;m)
or
2. PI(k,f;m) >PI(k-1,£;m) - (k) and (88)
PI(k,&;m) > PI(k-1,4;m)

In eq. (87), PI(k,#;m) is going in the proper direction but hasn't gone far
enough during one iteration. In eq. (88), on the other hand, PI(k,{;m) is
going in the wrong direction. In order to distinguish between the two
modes in eqs. (87)and(88), let

PI(k,2;m) - PI = g; (89)

where

i = 1if y(k) = 0asin eq. (87)

i 2 if y(k) = 0 as in eq. (88)

From eqs. (87)and(88), it follows that

g; < 0 and g, >0 (90)

In order to distinguish between the cases when XT‘Q(k) - '):'l, in eq. (86),
is positive or negative, let

£ ~
M) - X = By (91)

129



where

. ~
lﬁxl(k)>xl

.
n

ey ¥ ~
2 1f)\1 (k)<)\1

.
i

Upon substitution of eqs. (91) and (89)into eq. (86)the latter equation becomes

3 C g *

k=1,2,...

The behavior of )‘l (k+l) is tabulated below for i, j = 1, 2. Table VII was
obtained by analyz1ng eq. (92) for all combinations of i and j. It provides
the starting point in our inquiry as to how )\’il is updated from one iteration

to the next.

TABLE VII

SUMMARY OF BEHAVIOR OF )\Tl(k+1)

i 1 2
j (PI improved, but not sufficiently) (PI Worse)

1 )\T‘Q(k+l) increases in the )\’f!(k+l) reverses direction
direction of the precedlng and becomes smaller than
value of N3, \¥(k), (k)
which tended to improve PI

2 >§<‘Q(k+1) decreases in the )\’fl(k+l) reverses direction
d1rect10n of the *lpreceding and becomes larger than
value of )‘l » NE(k), AY(k)

which tended to improve PI

The transition in )\’fl from )\’f‘e (k) to )\T‘Q(k+l) may be conveniently viewed
as the transition from one of four states in a finite state machine. The four
states are (i, j) = (1, 1), (1,2),(2,1), and (2,2). The possible transitions are
depicted in fig. 4] which was obtained by analyzing Table VII for all com-
binations of (i, j).
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From fig. 41, one observes that six different limit cycles may occur
during the updating of A”fl. The first is the self-loop at the node associated
with tae state (1, 1). In this first case A4 continually increases. The
second limit cycle appears as a self-loop at node (2, 1). In this second case
£\ continually decreases. The third limit cycle is associated with the
transitions from state (1, 2) to (2, 2) to (1, 2) etc. In this third case A\ 1
oscillates in magnitude. The fourth limit cycle is associated with the tran-
sitions from state (1, 1) to (1, 2), to (2, 2), to (I, 1), etc. Here, A decreases
during the transition from (1, 1) to (1, 2) but increases during the transitions
from (1,2) to(2,2), and (2,2) to (1,1). The fifth limit cycle is associated
with the transitions from state (2, 1) to (2,2), to (1,2) to (2,1), etc. Over
this fifth limit cycle A"ff increases once and decreases twice. The sixth
limit cycle is associated with the transitions from state (1, 1) to (1,2) to
(2,1) to (2,2) to (1,1), etc. Observe, also, that it is impossible to have
transitions from certain states to others [(1, 1) to (2, 1), for example] and
that no self-loops are possible at states (1,2) and (2, 2).

The above limit cycles were observed during the simulations. The
interesting point to be made here is that using the transition diagram concept
all limit cycles can be predicted ahead of time.

Threshold function, ¢'(k): In this paragraph the time-varying nature of
the threshold function ¢' in eq. (83) is discussed. First, it is demonstrated
that ¢' should be time-varying; hence, ¢'A ¢'(k). Then, an explicit
expression for e¢'(k) is discussed.

L-n\;l(k+ >t m

* «f
L s-atks nattio

Figure 41. Transition Diagram for A ;‘ (k) to )\;e(k F1k=01,.
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The discussion below, in connection with the time-varying nature of ¢,
is presented in the context of a straight average™ for BI. It has been
previously established that when Y= 1 - 1/(k+2) the average in eq. (66)

reduces to a straight average. In this case, it is straightforward to show
that

Pi(k+1,2;m) 8:1;; PI(k,4;m) + ﬁrﬁ(l&l,!;m) (93)
k=01,
where
PI(0,2;m) = 1Tﬁ(o,lz;m). (94)
The inequality
PI(k+1,8;m) < PI(k,£;m) - ¢ k =0, 1,... (95)

which is used in the decisions for updating the control gain-change vector,
reduces to

_Pl%f_:ngl < PI(k,8;m) - (k+2)¢' (96)

k=0,1,...

when eq. (93) is substituted into it. If the on-line-learning algorithm is
functioning properly, PI(k,#;m) will be getting smaller as k gets larger;
however, (k+2)¢' will be getting larger as k increases. This means that unless
¢' is a function of k there will be values of k for which eq. (9€) will not be
satisfied, since PI must remain positive. Actually, if k = kp,55-is the

largest positive integer (or zero) for which the right-hand side of eq. (96) is
positive then as PI(k,#;m) — ¢ kmax — 0- It must be concluded, therefore,
that € must be functionally dependent upon k.

Various rules were tried for ¢'(k), such as ¢'/(k+2), an exponential rule
and, finally, the rule

e'(k) = C2 Pl(k,2;m) k=0, 1,... . (97)

#*The generalization to the linear reinforcement average is straightforward.
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The argument is somewhat different, however, than the one presented
below for straight averaging.




It was found (through simulations) that the rule ¢'/(k+2) was too sensitive;
i. e., using this threshold the feedback paiameter vector was continually
changed due to the fact that for a specific value of k ¢'/(k+2) was usually
too big a change to be required of PI(k,£;m). The exponential rule, on the
other hand, was not sensitive enough; ¢'(k) got very small so quickly that
extremely small changes in PI(k,;m) were considered successful. The
constant C; in eq. (97) is a design parameter and may be interpreted as a
fractional change in PI(k,f;m). Choices for C, are discussed in a
subsequent subsection.

Control Situations: Generally, two types of control situations are
distinguished: off-line or nominal control situations, which are based upon
a priori ranges for the plant parameters (as in Section 2); and on-line
control situations, which are based upon the actual on-line trajectories
taken by the parameters in the augmented plant parameter space. In certain
applications it may even be expeditious to reorganize the nominal control
situations into on-line control situations which are geometrically different
from the nominal situations.

Suppose, for example, a(t) and o(t) vary as shown in fig 42a. In this
example the nominal control situations might be restructured as in fig. 42b
in order to make use of the on-line trajectory information and, also, to
permit finer refinements in the control gains to be made than might have
been possible for the nominal control situations. While it is relatively
straightforward to mechanize the construction of circular or hyperspherical
regions (it is not an easy matter to mechanize hypersquares) on-line, it is

% a X
I 1 1 I
2 -a TRAJECTORY 4~
| 7]
"
/] [
7 7 —>
4 -a
/ (
/
,/
N ON-LINE CONTROL

SITUATIONS

\—NOMINAL CONTROL SITUATIONS
() (b)

Figure 42. An Hypothetical Plant Parameter Trajectory in Relation to (a) Nominal Control
Situations and (b) On-Line Control Situations
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not an easy matter to construct hyperspherical control situations in the
sense of the control situation definition in Section 2. For the above reason
and, also, because it is doubtful that distinct trajectories like the one in
fig. 42a will occur in the present anplication, the nominal control situations
designed in Section 2 are also used as on-line control situations. Distinct
trajectories are unlikely because a(t) varies rather slowly.

Simulation Studies

Several experiments were performed in order to evaluate the Error-
Correction Learning Algorithm and to determine suitable values for some
of the design parameters which are utilized by the algorithm. These
parameters are Y, C,, and C, which are associated with the reinforcement
averaging [eq. (63)], control gain-changing [eq. (85)] and threshold setting

fea. (97)). respectively.

Despite the fact that the experiments described below are of the simplest
variety, difficulties were experienced. These difficulties are similar to
those usually experienced during the solution of a multivariable optimization
problem with an heuristic algorithm. They are compounded here by the
numerous design parameters which enter into the algorithm, and by the
dynamic nature of the on-line optimization problem.

The following three types of experiments were performed:
1. Experiment A--Correct nominal controls and (on-line) P, = 0.96*
2. Experiment B--Incorrect nominal controls and (on-line) pl = 0.96
3. Experiment C--Correct nominal controls and (on-line) P, # 0.96

The purpose of Experiment A was twofold. First, the experiment checked
the error-correction algorithm to see if the algorithm updated the control
gains unnecessarily; and, second, it investigated different choices for

the design parameters Y, C; and C;.

Exneriment B may be interpreted in either of the following ways. First,
it may be viewed as a test of the on-line learning procedure as a design
tool. Second it may be viewed as a test of the error-correction algorithm to
properly update the control gains in the face of plant parameter errors, if
such errors degrade attitude errors.

In Experiment C on-line learning was used to update the control gains
in order to compensate for erroneous a priori information about disturbance
torques.
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the other hand, the actual disturbance‘torques differed from those assumed
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In each experiment the following assumptions were made:

1. The actual disturbance, £(t), is a first-order Markov process. In
Experiments A and B £(t) = £(t); however, £(t) # £(t) in Experi-
ment C, the difference being thatoy = og [see Assumption 3, below,
and Appendix C, ].

2. There is no measurement noise and all Astates are observable; hence,
the loop is closed around the plant and ga(tlt) = % (t) and z(t) = x,(t)
in fig. 3.

3. Theaugmented plant parameters are completely known because
the parameters are generated. Hence, _Aa(tlt) = Pa,(t) in fig. 3.
In addition, a (t) and a(t) are fixed at constant values for each
Experiment.

A simplified version of fig. 3, one that describes these experiments, is
shown below in fig. 43. This system was simulated on the IBM 7094,

A total of 51 different runs were performed: 7 for Experiment A, 34 for
Experiment B, and 10 for Experiment C. The following values of a and «
were used in one or more of these runs: (a,a) = (0.40, -0.80), (0, -0.40),
(-0. 30, -0.40) and (-0. 30, -0.80). For a =0,40, 0, and -0. 30 the open-
loop system is stable, has a double pole at the origin, and is unstable,
respectively. Adecisioninterval equalto0.05wasusedinevery run (time did
not permit the decision time to be considered as a design parameter).
Experimental results for each experiment are presented and discussed next.

Experiment A. --During this experiment, different rules for the
threshold function ¢'(k) were investigated. Discussions on three of these
appeared previously in Section 4. The final choice for ¢'(k) is given
in eq. (97). This rule was simulated for different values of C [0. 05,
0. 10, and 0. 20}, which was finally set at 0. 20; hence, it was required that
the (k+1)st sub-goal performance index, PI(kt+l,{;m), be 20 percent less
than PI(k,f;m). Within this experiment, this 20 percent rule worked well,
It did not work so well, however, in the other experiments (see subsection
titled "Experiment C'").

Different values for the design parameter Cl in eq. (85) wereinvestigated
in relation to the rate 'at which xj(t) was driven less than or equal to 0. 20
arcsec. Values of Cl = 0.05, 0.10, and 0.20 were tried. The final
choice for C; was 0. 10; hence, the amplitude of the on-line-optimal feedback
parameter vector was updated by 10 percent of its preceding value,

Different values for the learning parameter, v, in the linear reinforce-
ment ~.verage were tried (Y= 0. 10, 0.20, 0.40 and 0. 60). A value of
Y= 0. 10 was finally chosen.

The choice for a suitable value of yis complicated by a paradox, which
became apparent after a few runs. Suppose, for example, that the system's
performance is initially poor; that is to say, attitude error is increasing and
PI(k+1,4;m) > PI(k,#;m) for k = 0,... , K;. Assume next that the system's
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performance improves during the (Kj+1)st time interval; i. e., ﬁ Ki+1,2;m)
<Pi(K1,4;m). It would certainly not seem desirable to change _12* at this
point; however, if yis too large (usually, > 0. 20) the past poor p%rforma.nce
is too heavily weighted and, as a result

PI(K1+1,I;m) £ PI(KI,I;m) - g’(Kl).

Therefore le is once again changed. In this situation, a small value for ¥y is
desirable so that when the system's performance goes from bad to good the
present is weighted more heavily than the past. Assume, next, that the sys-
tem performs well for k = K}+1,..., K2, which means that PI(k+1, ¢;m)
<PI(k,£;m) for k = K}+1,..., K2. Now, since x (t) is a stochastic process

it may easily occur that, for K;T<t<(K+1)T, xlkt) is larger than it was for
(K2-1)T< t<K2T and is just larger than *0.20 arcsec; hence, P'T(K2+1,£;m)
>FI(K2,I;m) which means that the control gains must be changed. With a
small value of Y, the degraded performance is weighted much heavier than all
good previous performance, even though the system was performing well dur-
ing many iterations. In this situation a larger value for ¥ is desirable. Obvi-
ously, unless Y is adaptive, the requirements for small and large y can not

be satisfied simultaneously.

Experiment B. --During this experiment the system was initially controlled
by an incorrect nominal controller (the nominal controller designed in
Section 2 is the correct nominal con:roller). The incorrect nominal controls
were obtained in two ways. In one approach, an incorrect value for the
weighting fupction, a, was specified during the computation of the nominal
gains A, A3, and A\3. Since the three gains are functions of p [egs. (3) to
(5)], each gain was incorrectly specified in this first approach. In another
approach only M was specified incorrectly; it was chosen different enough
from the true value that attitude errors exceeded %0. 20 arcsec.

Regardless of how poorly por )\{ were chosen, the performance of the
system improved, initially; that is attitude errors decreased, initially. In
these cases, however, a limit cycle larger in magnitude than 0. 20 arc-
sec occured for x, (t); hence, on-line learning was required to reduce the
magnitude of the Iimit cycle to within 0.20 arcsec.

After a number of unsuccessful runs, during which the three components
of P¥lwere updated simultaneously, it was decided to hold A% and \% at the
initial values and to update )\'f only. The justification for this stems in part
from the results of the nominal control design. Thereé (Table III) it is
observed that )t? is most sensitive to a and #. As soon as this approach*was

*Varying A}, while holding A, and A3 fixed, represents an incomplete
relaxation-method approach to the solution of the on-line optimization problem.
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adopted the error-correction algorithm functioned as expected and many
successful runs were obtained. The details for one run are discussed next.

In fig. 44 the magnitude of the attitude error is depicted when a = -0. 30
and @= -0. 80 for two conditions. The dashed curve depicts the behavior of
|x1(t)] under the action of the correct nominal controller [from Table III and
fig. 10 M8 284,55, A8 > 23.86 and 38 2 999. 78], The solid curye depicts
|x1(t)] under the action of an incorrect controller [A; = 100, \; = )\;_ , and
N3 = \3°]. Note the destabilizing effect when \; is incorrect. Before proceed-
ing, it should be mentioned that the random sequences used in generating the
disturbance torque were identical in both cases; hence, the system was
subjected to the same random disturbances in both cases. This sequence
was also utilized in the learning runs and was available by virtue of the way
the sequence was generated and programmed for the 7094. The disturbance
state, which remains unchanged during learning, since it is an uncontrollable
state, and which reflects thic randem sequence, ie depicted as the Aached
curve in fig. 45. It must be observed that correlation between the large
values of |£ (t)| and the values of |x)(t)|that are greater than 0.20 arcsec
exists (fig. 44).

The behavior of |x(t)] during on-line learning is depicted in fig. 45
(solid curve). In addition, the behavior of )\’i:(t) is shown directly above the
plot of lxl(t)|. The time scales are the same for both plots. Observe that
there was always a lag of at least 0. 05 units of time before the learning
controller sensed that the attitude errors exceeded #0.20 arcsec. This is as
expected, since the decision time T = 0.05. It must also be observed, that
)»*i(t) was updated only when |x;| > 0.20 arcsec, as postulated (the stopping
rule which is embodied in the theorem presented in the subsection entitled
1"On-Line Cost Functions'' was used to ensure this behavior); hence, the
algorithm was functioning in an error-correcting mode, as designed.

At first sight, it does not appear as though the system's performance
was improved during on-line learning. Looking closer at |x1(t)| in fig. 45
and fig. 44 one notes, however, that the behavior of lxl(t) in the on-line
learning case is superior to |x1(t)| when \; = 100. For example, the time
interval during which |x(t})] > 0.20 arcsec is always smaller in the on-line
learning situation. This is because of the attempted improvements (this may
not always be the case however). Note also that Aj(t) is moved in the proper
direction by the algorithm, although there are many detours, the most notable
of which occurred at the end of the run. These '"detours' and other move-
ments of XT(t) corroberate the limit cycles discussed in connection with
fig. 41. For example, the sideward movement for 4. 2<t < 4.5 is indicative
of the limit cycle from state (1, 2) to (2, 2) to (1, 2), etc. The strange
behavior for 10.35 < t < 10.5 is predictable and is indicative of the self-loop
limit cycle at state (2, 1).

It must also be pointed out, that for 7. 65 < t < 7. 75 the attitude error
exceeds 0.20 arcsec, but for only a very short time interval. The
algorithm ignores the good performance of the system over the preceding
35 iteration intervals (T = 0. 05) and changes )\’i‘(t). Fortunately, the change
was made in the proper direction and the attitude error was swiftly contained.
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If a larger value of y had been used, one which took into account the
satisfactory ,?erforma.nce over the 35 preceding iteration intervals the
changes in Aj(t) might not have been made because they might not have been
necessary (note thatlﬁ(t)' is decreasing).

Experiment C. --During this experiment the system was initially
controlled by the nominal controller, which was designed under the a priori
assumption that the on-line Pr{|f|<10-4 1b-ft}= 0. 96. The system was
disturbed on-line, however, by larger disturbances; that is to say, during
this experiment Py # 0.96. The nominal controls are correct when Py = 0. 96.
They are incorrect when Py # 0.96; hence, the need for on-line learning
during the present experiment.

It was observed that, for the system under the control of the nominal
controller, attitude errors are contained when the on-line Py was as low as
0.50. Runs were made whenp, = 0.10 and 0. 40. Some were successful,
others were not. The results from one of the runs, where a = 0, 40 and
a= -0. 80, are depicted in fig. 46. Once again, observe the correlation
between large values of|§ (t)l and large value of 'xl(t)l. Although only
three changes in \j(t) are necessary in order to maintain |x1(t)| =0.20 arcsec
more changes may be required should attitude errors again exceed
+0.20 arcsec for values of time greater thant = 3.6.

In some of the runs, C32, in the rule for ¢'(k), was observed to be too
large. Generally, too large a threshold has a deleterious effect on )\T(t).
For example (Refer to Table VIland fig. 41), if the system is initially in
states (1, 2), or (2,2), and moves to state (2, 1) [in which case \¥(t)
decreases] it is probable, due to too large a threshold, that it will remain in
that state for many iterations. Generally, )\’f(t) should increase if attitude
errors are to be reduced [eq. (C. 23), for example]; however, )\T(t) decreases
for as long as the system remains in state (2, 1). This condition represents,
in effect, an instability in the learning algorithm. Usually, though, it is
not a permanent instability, since the performance of the system deteriorates
rapidly as )ﬁf(t) becomes smaller. Eventually the system moves out of
state (2, 1) and )\’i‘(t) begins to increase,

Surnmary

An on-line learning procedure has been discussed and simulated. It
is termed error-correcting since it leads to control-gain changes only when
the present performance is worse than the preceding performance. The
Error-Correction Learning Algorithm, as the learning procedure is called,
has been discussed in detail. Although no mathematical proof for its con-
vergence exists, it is felt that the algorithm should update the control gains
in the proper directions. This was verified, in part, during the experiments
which were performed. In addition, it was demonstrated, through the use

*There is a relationship between larger values of Y and the threshold e' (k).
For example, if C2 = 0. 20, then increasing y may lead to larger values of PI

for which a 20 percent reduction in the sub-goal performance index during one

iteration interval may no longer be practical. The dependence of €'(k) on
Yrequires further study.
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of a state transition diagram, that six limit cycles may occur during the
updating of the control gains. These limit cycles were predicted and, in
addition, each was observed experimentally,

The simulation studies were for a simplified system, one in which the
loop was closed around the plant and not around the state estimator derived
in Section 3. The reason for this is that the study described in this section
was in progress in conjunction with the study in the preceding section. Time
did not permit the nominal controller to be redesigned in order to compensate
for estimation errors; hence the simulation in the present section could not
be performed for the system with the loop closed around the filter. In the
simplified system no measurement noise was assumed and, for that case,

a theorem which relates the overall performance index to the containment of
attitude errors over an interval of time was proved, The extension of the
theorem to the case when measurement noise is present is possible if it

is assumed that the system is discrete--as it is when it is simulated
digitally. The white measurement noise becomes a Gaussian random
sequence and is mathematically tractable in the inequality analysis involved
in the proof of the more general theorem. :

Results from the experiments demonstrate that on-line learning has the
potential for improving a system's performance, on-line., Much more work
needs to be done, however, in connection with the algorithm used in the on-
line learning procedure before a point is reached where more significant
experiments can be considered., An example of these experiments is one
where a and a are time-varying and the loop is closed around the estimator.
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Section 5

CONCLUSIONS

A preliminary design of a fine-attitude, single-axis controller for an
almost cylindrically symmetrical spacecraft, operating in a partially known
environment, has been performed. The design proceeded in two stages.

First, a nominal controller was designed. This design incorporated all
available information about the plant and the plant environment. If the plant
and the on-line environment are as assumed off-line, the on-line attitude
errors are contained to within #£0. 20 arcsec, (as required). The nomi-
nal controller is nominal with respect to the overall on-line controller, which
was provided with a capability for updating the nominal controller, when and
if updating is necessary.

The on-line controller designed during the second stage is an on-line-
learning controller. This controller utilizes the system's past experience in
attempting to improve the system's present performance. Learning is accom-
plished, for the most part, through inclusion of a memory into the on-line
controller.

The nominal control system serves two purposes in relation to the on-line-
learning control system. Firs¢, it is used as a system with which the per-
formance of the on-line-learning control systemm may be compared; and a
comparison of this type is important if the on-line-learning control system is
to be judged fairly. Second, simulations of the system under the action of the
nominal controller point up the reasons, if any, for wanting to include an
on-line learning capability. Hence, the nominal controller not only serves to
provide the justifications for on-line learning, but also provides a reference
for statements made about the performance of the on-line-learning control
system.

The nominal controller, which is a linear combination of estimated
states, is an adaptive controller, in that feedback gains are changed when
plant p rameters change. On-line estimates of the states and time-varying
parameters (two) are required, in order to implement this controller.

An augmented Kalman filter was investigated for obtaining combined,
on-line estimates of the states and parameters. Due to the insensitivity of
the combined estimator to plant parameter variations (£100%), satisfactory
estimates of these parameters were not obtained, although good estimates
were obtained for the states.

The design of the gains for the nominal controller proceeded in three
steps: (1) for fixed values of plant parameters, nominal gains were obtained
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using stochastic optimal-control theory; (2) for specific ranges of the plant
parameters, which were denoted control situations, nominal gains were
obtained using the results from Step 1l and sensitivity analyses; and (3) for the
gains designed in Step 2, simulations were performed in order to observe the
effects of some of the assumptions made during the design. A continuation of
this procedure to higher-order systems, using off-line training, is elaborated
upon in Appendix D.

For the system under the control of the nominal controller, the following
was observed:

(1) Disturbance levels greater than those anticipated during the design
of the nominal controller may cause attitude errors to exceed
+0. 20 arcsec;

Addlded i manen P I T - - 2
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tude due to state-estimation errors, when disturbance torques are
of the order of magnitude of 10-4 Ib-ft;

Py
~

(3) If disturbance torques are only of the order of magnitude of 10-6 1b-ft,
attitude error will remain less than *0. 20 arcseg, e/en though
estimation errors occur (provided measurement-noise level is low);

(4) Large measurement-noise levels degrade attitude error further, due
to larger state-estimation errors;

(5) Neither the time-varying nature of the plant parameters, nor param-
eter mismatches (at least as large as +15%), degrade attitude error
further.

Once the effects of state-estimation error, measurement noise and
parameter mismatch (or parameter-estimation error) are observed, compen-
sation should be possible through the modification of the nominal controller.
On-line learning is not required for the compensation of these effects, since
the effects are known a priori (before the spacecraft is in orbit).

Different disturbance levels, on the other hand, may necessitate on-line
corrections of the nominal controls. One approach is to update the nominal
gains only when the system's performance becomes unacceptable (attitude
errors exceed #0. 20 arcsec), or if the performance deteriorates. A
second approach is to update the nominal gains regardless of whether the sys-
tem's performance improves or worsens. The first approach is referred to as
error-correcting, and the second as reinforcing.

Two reinforcement, on-line optimization techniques were formulated for
this study. The first utilizes concepts from stochastic automata theory, while
the second utilizes concepts from random optimization theory. The stochastic
automata approach, while interesting, does not appear to be applicable to the
fine attitude control problem. This is because of the dynamic nature of this
optimization problem, the time-varying behavior of the system and the diffi-
culty in finding a meaningful stationary expected value function for the problem.




The adaptive, random-optimization approach appears promising; however, it
remains to be tested (through simulations) in the context of the fine-attitude
control problem. Adaptive, random optimization has, however, been used
with success at Douglas in the context of a 58-dimensional stationary, cal-
culus, hill-climbing problem; excellent convergence properties have been
observed.

An error-correction technique was formulated and tested for this prob-
lem. Although no mathematical proof for the techniques convergence exists,
it is felt that the technique should update the control gains in the proper direc-
tions. This was verified, in part, in a number of experiments. In addition,
six limit cycles in the control gains were predicted, using a state transition
diagram. Each limit cycle was observed experimentally. Unfortunately,
time did not permit a complete study of the error-correction technique.

Attention should be devoted to optimum choices for the many design.
parameters which are a part of the Error-Correction Learning Algorithm;
or, the Algorithm should be modified, to reduce the numbers of these param-
eters. The application of the Algorithm to the multivariable optimization
problem requires further investigation. Finally, on-line cost functions which
ensure desirable relative stability properties should be developed. Using the
present on-line cost functions, one is only able to achieve a form of asymp-
totic stability for attitude errors (to a random limit cycle).

Results from the on-line learning experiments demonstrated that on-line
learning has the potential for improving a system's performance. The on-line-
learning controller appears, however, to be very complex, requiring an
on-board digital computer in order to mechanize the on-line-learning algo-
rithm. No doubt, the tradeoffs between an on-line-learning control system
and an over-designed nominal controller (overdesigned, perhaps, by assuming
|£(t)| = 10-3 or 10-2 1b-ft instead of 10-4 Ib-ft) should be investigated. The
overdesigned nominal controller would, for example, use more control effort
but would be less complex than the on-line-learning control system. The
learning control system, on the other hand, would be able to cope with the
unexpected.

A final remark about what a learning control system can and cannot be
expected to do is in order. Much confusion exists in the minds of engineers
on this point. This study adopted the following ground rule for on-line learn-
ing control systems. Ground Rule: An on-line-learning controller must be
able to satisfactorily correct any degradation in performance that could have
been treated satisfactorily had its cause been anticipated.

At the present state-of-technology in learning control systems, however,
the supernatural should not be expected from these systems. For example,
if an inertia wheel falls apart it should not be expected that present learning
control systems learn how to repair the wheel or learn how to function without
the wheel. On-line-learning control systems are only as good as the on-line
learning strategies. These strategies are, at present, decided upon by the
control system engineer and are, for the most part still in the very early
stages of development.
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Appendix A
SYSTEM DYNAMICS

The equations of motion for a satellite in Earth or Mars orbit are
presented in this section. It is assumed that fine attitude control of the
satellite is required, as in the case, for example, of a pair of laser com-
munication satellites; the satellite telescopes must be pointed very accurately
in order to maintain the communication links between the satellites (fig. A-1).

Before presenting the equations of motion for the satellite, a dis-
tinction must be made between coarse and fine attitude control and fine-
pointing control. These distinctions will provide the proper frame of
reference for the specific problem discussed in this document.

By course attitude control is meant, that mode of control which
brings attitude errors to within #M arcsec (for example, 80 arcsec).
Fine attitude control (fig. A-2) refers to that mode of control which
brings attitude errors from within M arcsec to within *¢ arcsec
(for example, 0.2 arcsec for a laser communication satellite). Once
fine attitude control is achieved, that mode of control which points the
telescope is fine-pointing .control; thus, unless attitude errors can first
be maintained less than or equal to ¢ there is no hope of pointing the
telescope properly. In this study it has been assumed that these modes
of control are distinct.

Equations of Motion

The equations of motion for a satellite are derived in ref. Al. The
following assumptions are made in this document:

(1) Attitude error perturbations are small.
(2) All aerodynamic and incident radiation torques except for torques
due to attitude changes about the same axis are lumped into per-

turbation tor§ue terms.

(3) Gravity torque contributions of planetary oblateness and higher-
order potential terms are lumped into perturbation torque terms.
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Figure A-2. Regions for Coarse and Fine Attitude Control
and Fine-Pointing Control (Shaded Region)

%
(4) All reference axis angular velocities are neglected .

(5) Linear perturbation motions (translation-rotation coupling) are
neglected.

#*Reference axis angular velocities are mainly due to velocity aberration of
the distant source. The maximum angular velocities associated with this are
given by (W) . = (K/c)o2 where c is the speed of light. Numerical values
for (w)max for four cases are tabulated below, and are seen to be quite
small from the point of view of inertial coupling. Reference axis angular
velocities due to parallax should be entirely negligible.

Central wody Orbital Altitude, nmi (w)max’ rad/sec.
Earth 100 0.0233 x 10-6
Earth 19, 300 (synchronous) 0.000717 x 10-6
Mars 100 0.00878 x 10-6
Mars 1,000 0.00442 x 10-°
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(6) Reference axes are at arbitrary inclinations to orbit axes, but are
fixed in inertial space.

(7) Only moving parts are three axially symmetric inertia wheels
rotating on axes fixed to the vehicle.

(8) Each wheel axis is aligned with a vehicle principal axis (defined
on the composite vehicle, including wheels).

(9) Inertia wheels are stopped when attitude errors are all zero.
(10) Satellite is cylindrically symmetrical.
(11) Control is proportional to the system's state variables.
These assumptions permit us to linearize the equations of motion, lump
all perturbation disturbance torques into a single term, and decouple the

equation of motion for one of the three body axes (fig. A-1) from the com-
plete set of equations.

The equations of motion can be shown to reduce to the following set:

2

dac b 1 .1

I oz + ey DL (8) + e ()L,(t) + c et Lg(t) = - CT dp &7 (1) + bpL (1)
Idz—gg+ (t) L, (t) + t t) + t t) = Czd '2t+6L
2 dtz Cry )5, (t) 055( )éz() 056()§3() = - B w (t) B 2(t)

~ctay S sl (Al

I, d2§23 +eg 0L (0) + cp (DL,(t) + cget)Lylt)
dt

The nomenclature used in eq. (Al) is that found in ref. Al and is defined
in the list of symbols at the beginning of this report. In addition, the
parameters c44(t), c45(t), ..., and c66(t) are tabulated in table A-I.

For notational convenience, eq. (Al) is rewritten as

2,00+ ay (8,6 + ay(5,(1) + ag()Ly(t) = bidg &' (6) +d) 4(t)

(1) + 2, ()5, (1) + ag(t)L,(t) + ag(t)Ly(t) = b,d

5 w2t + a, (1)

L0+ a (1) L (6) + ag(t)Ly(t) + ag(Ly(6) = badp © (1) + d3ty(®) (A2)




TABLE A-I
PARAMETERS IN EQUATION (Al)

Symbol ' Formula*
aL) 3K 2
c44(t) -32,—1 + (IZ - 13) 53 cos an(t) cos r\lz(t)
L, 3K [ . 2 2 2
Cgilt) 3L, + (I3 - 1) =3 [sm n,(t) - cos n(t) cos nz(t)]
9L3 3K .2 2 .2
c66(t) -E;+ (I1 - IZ) ﬁ [sm 'ql(t) cos nz(t) - sin nz(t)]
c,o(t) (I, - 1) 3 sin n (1) sin n,(t) cos n. (1)
45 372" %3 1 2 n2
3K . 2
c56(t) (I1 - I3) :?: sin nl(t) cos 'ql(t) cos 'qz(t)
(t) (1, - 1) 3K (t) sin n,(t) (t)
o4 2 ~1}) g cosnm sin n,(t) cos n,
(t (L, - 1,) 3% (£) sin 1, (t ¢
46 ) 2 3) =3 cos n, sin T]Z( ) cos T]Z( )
(t) (I, - 1) 2% sin 1, (t) sin 0, (1) ¢
Coy 3~ 1) 3 sin n, sin n,(t) cos nz( )
3 . 2
c65(t) - (I1 - IZ) U—Ig sin ql(t) cos nl(t) cos nz(t)

oL
2] are aerodynamic and incident radiation torque derivatives which can
9L i/ be pre-estimated.

where

£(t) = b L(t) i=1,2 3 (A3)

and the parameters a (t), . a,(t), b 1 , b,, d,, d.Z’ and d3 are tabulated
in table A-II. Observe that for 2 spec1f1c vehxcle configuration, ranges on
al(t), ..., and a9(t) can be obtained from the expressions for these quantities
in table A-II.
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TABLE A-II
PARAMETERS IN EQUATION (A2)

Symbol Formula Symbol Formula
a(t) c44(t)/1, ag(t) ceelt) 1z
a,(t) c 501 b, ¢l
a,4(t) c46(0)/1; b, -c2/1,
a,(t) cg /1, b, -c3/1,
ag(t) c55(t)/12 d, 1/1,
ag(t) cge(t)/I, d, 1/1,
a,(t) c64(t)/13 d, 1/13
ag(t) ce(t)/Iy

The control variables ul(t), uy(t), and u3(t) are taken as the relative (to the
vehicle) angular accelerations of the thrée inertia wheels. This implies the
existence of tight closed-loop control of the relative angular accelerations
of the wheels.

&ty

ul(t) dB

uy(t) = dg G)Z(t)

ug(t) = dg &3(t) (A4)

Next, note from tables A-I and A-II and eq (Al) that if I1 = I3, I = Izor
I, = 1, (see assumption 10) then one of the axes (3, L} and &y, respectively)
is completely uncoupled from the remaining axes. In these cases, instead
of inve stigating the control of a completely coupled sixth-order system, the
control of a second-order system and a coupled fourth-order system can be
investigated. For example, ifI} =1,, eq (A2) becomes




EL() + 2 (DL(1) + ay(04,(t) + a(t)L5(8) = Dlu (t) +d 4 (1)

() + 2,(08,(0) + ag (0L, (6) + a (L(0) = byu,(t) + d, 4 (1)

£4(6) + ag(t)g5(0)

byug(t) + d 4 (t) (A5)

Hence this document shall concentrate initially (for the present study)
on the second-order system

L3(t) + ag(t)La(t) = bauy(t) + d 4(1) (A6)

Before this equation is written in state space notation, values for b
and d3, a range for ag(t), and the order of magnitude for the perturbation
disturbance torques, £(t}, are determined. These enable the formulation of
a scaled version of eq. (A6) in state space notation. The scaled version is
more useful than the unscaled version, especially for numerical calculations
and computer simulations.

Ranges for Certain Parameters in the
Satellite Equations of Motion

As an initial step, the vehicle configuration is identified further. For
the purpose of obtaining aerodynamic and solar radiation torque parameters,
a cylindrically symmetrical external configuration is assumed. The mass
distribution can also be assumed to be such that the transverse moments of
inertia I} and Iy are almost equal. Douglas studies of laser communication
satellites have resulted in configurations that are close to cylindrical
symmetry. Solar cells, which are arrayed on paddles on the Orbiting
Astronomical Observatory (OAO), destroying cylindrical symmetry, are
mounted on the sides and ends of the spacecraft shell in these studies.
Except for a relatively small radar antenna, these configurations have been
symmetrical.

Ranges on the Parameter d3. --The parameter d3 = 1/I3 is the inverse of
the axial moment of inertia. Fig. A-3 shows the ranges of weight and
moment of inertia expected for the laser satellite. The weight ranges shown
are taken from the study that resulted in Douglas-Document Number SM-48730P,
Proposal to Perform a Preliminary Design Study for an Optical Technology
Apollo Extension System. At the low end of the range, the laser satellite
weighs 900 1b and carries a single telescope with a 3-ft aperture. The upper
end of the range is a 15,000-1b satellite carrying 3- and 5-ft aperture tele-
scopes. The earlier study was not detailed enough to result in moment of
inertia estimates. The correlation in fig. A-3, which includes the Mercury,
OAO, and MORL space vehicles was used to provide this information. The
resultant range on the parameter d3 is 10-4to 1.1 x 10-2 1/slug-ft2. A
nominal value of 10-3 l/slug-f’c2 is suggested, corresponding to a laser
satellite weighing 4,000 Ib.
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Ranges on the Parameter b3. --The parameter by = -C3/I3 is the ratio
of moment of inertia for the fine-pointing inertia wheel that controls the
attitude error {3 (t), to the moment of inertia about that axis. The maximum
range of this parameter is -10-7 to -10-5, The smaller number would apply
for extremely precise control. A more reasonable value for fine pointing,
which is suggested for the current study, is -10-6. Papers written by a
number of authors were consulted in arriving at these results, including
DeBra (ref. A2), Cannon (ref. A3) and Adams (ref. A4).

Order of Magnitude for Perturbation Disturbance Torques g(t). --The
peak values of total (not perturbation) torques for the nominal 4000-1b laser
satellite are shown in fig. A-4, as a function of altitude above the surface
of Mars. These results show clearly that gravitational torques are dominant
in the altitude range considered. The aerodynamic and solar radiation torque
data given in fig. A-4 were derived from 0AQ data prepared by Evans (ref. A5).
The atmospheric density variations with Mars altitude were obtained by reduc-
ing the Earth density values given by Harris (ref. A6) by two orders of magni-
tude. This procedure was suggested by Dr. L. R. Koenig of the Douglas Space
Sciences Department.

It was assumed that a suitable range for £(t) is £10% of the total gravita-
tional torques; hence, {(t) is of the order of magnitude of 10-4 1b-ft.

1,000 I I I
[ NORMAL CONFIGURATION, WEIGHT = 4,000 LB,I._, =1,000 ]
800
AERODYNAMIC SOLAR
- / \ RADIATION GRAVITATION

N

ALTITUDE (NMI)

400|—— SOLAR MAXIMUM —>
DIURNAL MAXIMUM — N

200 SOLAR MINIMUM>\ AN

DIURNAL MINIMUM - N
0
1012 10°10 108 106 104 102 0
MAXIMUM TORQUE (LB-FT)

Figure A-4. Maximum Torques Applied to Laser Satellite in Mars Orbit
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Range on the Parameter ag (t). --The expression for ¢ 6(t) in table A-I
contains two terms. The first term 6L3/6§,3. is identically zero for exter-
nal cylindrical symmetry. The second term is identically zero for the
assumed mass distribution which makes I; = I,. However, under practical
circumstances, there will be perturbation torque gradients about the B3 axis
which would appear in the equations of motion as the parameter cggl(t) or
ag(t). These would result from the slight departures from external and
inertial cylindrical symmetry noted previously, such as would be caused by
a radar antenna. [1f these departures are significant the equations of
motion are once again completely coupled. Here, however, it is assumed
that the equation about the B3 axis is uncoupled and, also, that a.9(t) # 0.

In this way, a solution can be presented for a system that is characterized
by both a torque parameter and a plant parameter (see the section on State
Space Formulation).]

A uppei Hinil ou il gravitational torque gradient, 9L3/313, was caicu-
lated. For both the total and gradient gravitational torques, an inertial differ-
ence I} - Ip of 1/3 I3 was assumed. Fig. A-5 shows the orbital frequencies
for circular orbits around Mars, which vary from a maximum of 0.860 x 10~
rad/sec at sea level to 0.0707 ¥ 10-3 rad/sec at the synchronous altitude of
9, 000 mi. The trigonometric functions in a9(t) vary at twice this frequency.

10,000 | |
\ o [
8,000 o3
K = 1.55x 1015 ft3/SEC?
£ om0 FOR MARS
w o= AREOCENTRIC DISTANCE
2
’—
) 4'm0 \\
2,000
\
SYNCHRONOUS FREQUENCY \
0 / | —

0 2x 1074 ax 6x 1074 8x 10 10x 10°4
CIRCULAR ORBITAL FREQUENCY (RAD/SEC)

Figure A-5. Orbital Frequencies for Circular Orbits Around Mars
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This study used a peak value of ag(t) of 4 x 10-7 sec_2 varying sinusoi-
dally at 2. 0 x 10-4 cps. Thkis is an upper limit for the orbital altitude of
500 nmi. The lower limit of ag(t) is, of course, zero which corresponds to
exact external and inertial symmetry about B3. The upper limit on ag(t) is
independent of satellite size and is a function only of orbital altitude.
Fig. A-4 shows that there is no appreciable increase in gravitational torque
below 500 mi. Lower altitudes would be undesirable for operational reasons.
Tk~ expected range of dag/dt is twice the frequency values shown in fig. A-5,
or .rom 0.23 x 10-4 t0 2.7 x 10-4 cps. The values for ag(t), b3, and d3 that
are used in numerical calculations are summarized in table A-III.

TABLE A-III
SUMMARY OF PARAMETER VALUES

Parameter Units Value
a9(t) (sec2>—l 4x10°7 sin (41r x 10-4t>
-6
by —-- -10
2\-1 -3
cs (s1ug - ?) 10

Scaling of Equation (A6)

Upon substitution of the values for a9(t), b3, and dj (in table A-III)
into eq. (A6), that equation becomes

i) + [ax107 sin (47 x 1o'4t)]g(t) = 21078t + 107390) (A7)

To avoid small numbers during numerical calculations and during simu-
lations (for example, 4 x 10-7 or 10-6), eq. (A7) is scaled by defining a new
time t', where

£ = 10t (A8)

Upon substitution of eq. (A8) into eq. (A7), the latter equation becomes

2,00
(_Zl__{,_'(t_)_ + I0.40 sin (411’ X 10_7t')] t(t') = -u(t') + 103!(1::) (A9)
dt 2
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In all discussions in the sequel and in the main body of this report, t' is
the time referred to; however, for notational convenience, the prime notation
is dropped. In addition, (') is used for d/dt', [If £(t) is modelled from avail-
able physical data the difference between real time, t, and scaled time, t',
must be accounted for accordingly.)] Eq. (A9) is written, therefore, as

i) + [0.40 sin (47 x 1o'7t)] L) = -u(t) + 10°(t) (A10)
and is the basis for the system studied in the main body of this report.

State Space Formulation

Raced on the preceding discussgicns, the documecent shall coucentiate hier e
on the following second-order system

L(t) + a(t)l(t) = bu(t) + dL(t) (Al1)

which is equivalent to the scaled version of eq. (A6), eq. (Al0) (see
table A-IV). Eq. (All) can be expressed in vector-matrix notation as

x (t) = A(t) x(t) + bu(t) + d(t) (Al2)
. * T < T
where x(t) is the (2 x 1) state vector (xl, xz) = (¢,¢)", uand Lare
scalars,
aw =[° ! (A13)
-a(t) 0
b= (0 b)Y (Al4)
and
d = (0 d)T (Al5)

Observe that the plant matrix, A(t), varies very slowly in time (table A-IV).

*
Often, for notational convenience, the explicit dependence of x(t), u(t),
and £(t) on t is omitted; i.e., x = x(t), etc.




TABLE A-IV
VALUES FOR PARAMETERS IN EQUATION (All)

Parameter Value
a(t) 0.40 sin (4 x 1o‘7t)
b -1.0
d 1000

It is assumed that g(t) [which, from assumptions 2 and 3 in the section on
Equations of Motion, is a combination of second-order aerodynamic, inci-
dent radiation and gravity gradient effects] is either unknown or partially
known. It represents the unknown or partially known environment which acts
to disturb the satellite and, as such, is assumed to be a random perturbation
disturbance torque. More specifically, f(t) is assumed to be a colored (non-
white) stochastic process.

For the purposes of analysis, design and synthesis #(t) is modelled. Here
it is assumed that £(t) is modelled by a first-order Markov process; that is
to say, £(t)~ £(t) where £(t) is described by the following first-order differ-
ential equation

E() = a(t) £ (1) +v(b) (A16)
where v(t) is a white noise process with
E{v(t)} = 0 (A17)
and
E{vit)hv(r)} = VI(ts(t -T) (A18)

With £(t) >~ £(t), eq. (A16) and eq. (A1l2) can be combined; that is to say,
eq. (Al6) can be augmented to eq. (Al2). The resulting augmented state

equation is

x, () = A (Bx (B +b_ult) +£_v() (A19)
where the augmented state vector Ea(t) = (xl, X5 g)T and
Ami 4
A () = -——1 == (A20)
a 0 !a(
T
b, = (6,0 (A21)
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and

f,= @ it (a22)

(2x1)

Finally, it is assumed (see the section on Equations of Motion) that the
control u(t) is proportional to the augmented state vector (or to estimates of
the augmented state vector)

ult) = Alt)x, (t) (423)
where

A®) = (M0 X (0, N 5(1) (A24)

is a feedback matrix, with components dependent upon the parameters a(t)
and a(t).

As discussed in the opening section, fine attitude control is used to bring
attitude errors, xl(t), to within +e. Plant changes and excessive disturbance
torques could cause x; (t) to become excessive. The problem is, therefore,

to choose A(t) in eq. (A23) such that x, (t) remains within its prescribed limits.

Solutions to this problem which utilize artificial intelligence techniques are
discussed in the main body of this report.




Al.

A2,

A3.

A4,

A5.

A6.
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Appendix B

ESTIMATION OF STATES AND PARAMETERS
(FEATURE EXTRACTION)

A technique used to obtain sequential estimates of the three states xj(t),
x5 (t), and §(t) as well as the two augmented plant parameters a(t) and a(t) is
described in this section. The technique represents an application of Kalman
filtering to a2 combined state and parameter estimation problem. While it is
not the only technique used to estimate the states and to identify the param-
eters, it has an advantage over most other techniques in that it is able to
directly provide the bootstrapping effects from the parameter identifications
to the state estimations, and vice versa. The development below is similar
to that given by Kumar (ref. Bl) as well as Kopp and Orford (ref. B2); hence

sammamee AL b A abnlTla aen Avnibead
Wiaily Ci wnl Gluaias aiT UiiliieeCw.

The system of interest in this section is depicted in fig. B-1 and is
described by the vector differential equation (fig. 2, Part 2).

x,(t) = A (8)x_(t) + b _ult) + £ v(t) (B1)
where
x () = (%, §)T (B2)
0 10
A_(t) = <—a(t) 0 d > (B3)
a 0 0 aft)

_ T
b, = (0 b 0) (B4)

_ T
f,=(0 01 (B5)

and v(t) is a scalar white noise process with

Elv(t) = 0 and E‘V(t)v(r) =Vt -7) (B6)




u(t)
—P

n(t)
1 Xa Ya + 2
ry M
Ay

Figure B-1. System with Measurements
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*
and u(t) is a scalar [u(t) = up(t) for the system in fig. 2, Part 2 and u(t) =u {t)
for the on-line-learning control system in fig. 3, Part 2).

For notational convenience, the subscript a is omitted from all vectors
and matrices in the rest of this section. Where confusion between the aug-

mented and unaugmented systems is likely to occur, the subscript will be
included. Eq. (Bl) is written, therefore, as

x(t) = A(t)x (t) + bu(t) + w(t) (B7)

where w (t) is a 3 x 1 vector white noise process with

E’l* (t)! -0 2and E{w () ‘.‘.’T(T)} = WAt - 1) {RR)
and
0 0 0
w =1{(0 00 (B9)
0 0 WV

The observed output, y (t) is assumed to be

y(t) = Mx(t) (B10)
where
v (99

that is to say, it is assumed that x)(t) and x,(t) are observed. The analysis
below is not affected if different sets of observations are made; only M is
affected. Finally, it is assumed that the measured values of x1(t) and x; (t)
are corrupted with measurement noise. The measured output is

z(t) = y(t) + n(t) (B12)
where n(t) is a 2 x 1 vector white noise process, with

E[nm)] = 0 and Ela®nT )] = Rs(t - 7) (B13)




and R is the positive definite matrix

r 0
11
R = (B14)
<° rzz>

The problem is to estimate the elements a(t) and o(t) of the augmented
plant matrix A,;(t) and the components of X 5(t) from a knowledge of the
measured output z (t) and the control u(t). It is assumed in the sequel that
the estimation and control problems are separable. The implications of
this assumption are discussed in the main body of this report.

Before proceeding with the development of a filter for obtaining the
combined estimates, the following definitions are in order: ’

(1) E—A (t) & augmented plant parameter vector, where
a

P, () = (a(t), ()T (B15)
a

@) &, (0] A ) 0; ﬁAa(tﬂt)] & estimated value of x(t) [A(1); gAa(t)]

at any time t; > t given the observations z(0), ..., z(t).
g(tllt) approximates x(t]) in some suitable sense.

(3) Z(t1]t) [K(tllt); EA (tllt)léerror in estimating E[A? BA ] at time
a a

tl’ where

'i(tljt) = X(t)) - %(tllt) (B16)

The estimation and error vectors and matrices above are used extensi-
vely in the next few paragraphs, where the filter is derived.

A Priori Estimation and Error Equations

A ~
Here, equations for ga(tllt)' BAa (t1|t), ga(tllt) and BAa(tllt) are
formulated. The formulation initially” is continuous and then the continuous
equations are discretized. This is done since the optimal filter, derived in
the next paragraph, is discrete,
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To begin, equations which describe a(t) and aft) are augmented to
eq. (B7). Using the notation in eq. (B15) these equations combine to yield
the following vector differential equation for EA (t):
a

By (0 = TR, ) + 8 (B17)

where
N S 18
(t) - 0 YZ (t) (B )

and @i{t) is a Z x 1 vector whiie noisc process, wiin
T
E[@(t)] = 0 and Elew @ ] = Mo - (B19)

The fact that ®(t) is a random process provides a statistical degree of
freedom for the estimation of a(t) and a(t).

A A P ~
Next, expressions for 9_;_(t1|t), _}E_’_Aa(t1|t), X(t1|t), and —PA (t1]|t) are
obtained. g(tllt) and Aa(tllt) are unbiased a priori estimates of x(t1) and
P,.(t]), respectively [these estimates do not make use of the measurement
zit

1)) From eq. (B7), the unbiased estimate of x (tl) is found according to

feeylt) = Acey)t) Rty [t) + bult)) (B20)
where
0 10
Ayl = (Ao o 4 (B21)
0 0 B(t,|t)

and, from eq. (B17), the unbiased estimate of _IZA (tl) is found according to
a

éAa(tllt) = F(,tl)é-Aa(tllt) (B22)

3 A
Egs.(B20) and (B22) are the desired equations for ;/__Ea(tl|t) and P—A (tllt),
respectively. a




g(tl|t), one proceeds as follows. From

To obtain the expression for
(B7), and (B20),

eqs. (B16),
|0 = k) — k|0
()10 = At x (¢) — Acejly &yl + wit,)
e, 1) =[A(t1|_t)+A(t1|t)H X (510 + X @,)0) ] _A(tl|t)§(tl|t)+w_(tl)
(B23)

A(t,lt) g(tll t) + f&(t1| t) x(t,|t) + w(t))

Kt o)
In eq. (B23), the second-order effect A(tll t) z(t1| t) has been neglected, and

A(tl| t) is [from eqgs.(B16), (B3) and (B21)]

o} o] [0}
Z\(t1|t) = [ -at)0 o o (B24)
o 5(t1|t)

(o)

Proceeding in a similar manner for EA (tll t), it follows that
a
{B25)

By (410 = T B, (510 + @(t))
a a
Eqs.(B23) and (B25) are the desired expressions for g(tll t) and EA (tll t),
a

respectively.
Next, a new vector q(t) is introduced; it is defined as
(B26)

a® = (x(, B, )"
a

é\_(tl' t) and eqs. (B23)

Eqgs. (B20) and (B22) combine to give an equation for
and (B25) combine to give an equation for §(t1| t):
(B27)

é\_(tllt) = Q(tl)ﬁ(tl|t) + Lou(t)
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and
aln = Q) @l + e¥e)) (B28)

Eqs. (B27) and (B28) are the continuous (augmented) a priori estimation
and error equations, and, in these equations:

0 1 0
-a(tllt) 0 d
iy} = a ¢ ¢ o 0 (R29)
0 0 0 Y(t)) 0
0 0 0 0 v(t,)
0 1 0 0 0
A 4 )’;
Aty o X (£t 0
%
Q'(t)) = 0 0 Bt o L) (B30)
0 0 0 Yt 0
0 0 0 0 Y,(t))
L = ( 0 b 0 0 O)T (B31)
and
* T
ey = (o o vt () 8,(t))) (B32)

Observe that, because of the appearance of the states Ql(tl |t) and é(tllt)
in Q*(t}), the a priori error equation is nonlinear; hence, as will be seen in
the next paragraph, the optimal filter is nonlinear.
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Finally, eqs. (B27) and (B28) are discretized, for use in the next sub-
section. The resulting discrete (augmented) a priori estimation and error
equations are:

4(ntlln) = &(ntl, n) §(n|n) + A(n+l,n) u(n) (B33)
and
q(nt1ln) = & (n+l, n) §(n|n) + g_*d(nﬂ, n). (B34)
In these equations:
q(n+1 | n) a g[(n+1)TS|nTs] Bo= Ol ... (B 35)
d(ntl, n) = eQ(n)Ts (B36)
(n+1)Tg
A, n) = [ ®(n+l, 7) L dr (B37)
nT :
*
¥+, n) = 2 () Ts (B38)
and
(n+1)T
2%, ny = f S g¥n+l, 1) ¢¥(@) ar (B39)
nT

s

In the derivations of eqs. (B33) and (B34), it was assumed that Q(t;) and
Q"‘(tl) are piecewise constant over each sampling interval.

For the purposes of simulation, it is interesting to observe that
¢d (nt1,n), in eq. (B39) is a zero-mean vector random-sequence with a
covariance equal to CT , where

E{e*t) ¢*T(m} = Cs(t-1) (B40)
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and

0 0 0 o0 o
0 0 0 o0 O
C = 0 0 Vv 0 o0 (B41)
0O o0 0 Py 0
0 0 0 o

The expression for C is derived from eqs. (B32), (B19), and (B6).

A Posteriori Estimation and Error Equations

Here, the measurement taken att = t; is incorporated into the estima-
tion equations; the result is an optimal sequential-estimator. The deryivation
of the optimal estimator is well-documented in the literature (refs. Bl and B2,
for example); hence, in this subsection, the optimal estimator is only sum-
marized. Its structure is depicted (fig., B-2), with

M = (ME(ZOX3)) (B42)

and M is given in eq. (Bll)
T

ES T
K*(n) = [@ (n,n—l)o’(n—l)dﬁ< (n, n-1) + CTS]M* .
(B43)

T T
k[ %k 5 -
[M l@ (n, n-1)a(n-1)&" (n,n-1) + CTslM + RTS] 1

sk
where & , C and R are given in eqs. (B38), (B41l) and (Bl4), respectively,
and the covariance ¢ is given as

T

o(n) = |1 - K*(n)M*] [¢*(n,n-1)a(n-1)¢* (n, n-1) + CTS] ,(B44)

d(ntlln) is given in eq. (B33), and §(nln) is the optimal a posteriori estimate.
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It must be observed, that the system in fig. B-1 ties into the filter in
fig. B-2 in two places: z(n) and u(n). In addition, the filter is nonlinear,
since Q*(n) is a function of q(n +1lIn); hence, the convergence properties of
the filter are subject to question. To-date, to the best knowledge of the
author of this report, the convergence properties have not been studied.
What usually is done is that a linear region of operation is found, through
trial and error, and the filter is operated only within this linear region.
Any departure from the conditions required to maintain the filter operating
in the linear region may lead to instabilities and, therefore, to a filter
which is unacceptable for the new set of operating conditions.

It is not within the scope of the present study to investigate the
convergence properties of this or any other nonlinear or linear estimator;
hence, the approach was to determine a linear operating region for the
filter in fig. B-2, an operating region within which it is possible to obtain

estimates for x,(t) and Pa,(t). The estimates are required for the on-line-

learning control system in fig. 3, Part 2. Simulation results for the filter

are presented and discussed in the section on State and Parameter Estima-
tion for Control in Part 2.

§emin)
I
in) + o *m + fmin)
- +
ﬁ(nln-l)
Q(n+1ln) .
W e DELAY (& @1 & (wln) fg—
A(n+],n)
Ou(n)

Figure B-2. Discrete Optimal Filter Structure

175



References

Bl. Kumar, K.S.P.: On the Identification of Control Systems, Dissertation,
Purdue University, Jan. 1964.

B2. Kopp, R.E.; and Orford, R.J.: Linear Regression Applied to System
Identification for Adaptive Control Systems. AIAA Journal, vol. 1,
no. 10, Oct. 1963.

176




Appendix C

DESIGN OF NOMINAL (SUB-OPTIMAL) CONTROLS
FOR FIXED PARAMETERS

The sub-optimal control u;f (t), which serves as the initial control choice
for u*(t) in the on-line-learning control system (fig. 3,Part 2) is obtained here
for the off-line augmented system in fig. C-1  Sub-optimal control uf (t) is
found by optimizing a cost function which is quadratic in the attitude error
(x1) and control (up) and is obtained for specific combinations of a(t) and af(t).
Specific values of a(t) and a(t) are denoted a and @, respectively; hence, for
specific values of these parameters Aa(t) = Aa in fig. C-1.

X,(t) is a vector stochastic process, since it depends upon the random
process v(t). For every motion, a random variable V is defined as

T

1

1
V=3 [) [q X2 (t) + x ul (t)]dt (C1)

The constants q and r, which are both positive, penalize attitude errors
and control effort, respectively. The performance index is now defined to
be the expected value of V (with respect to the probability distribution of v(t)).
Control u3(t) is found by minimizing E {v}.

As stated, this is a problem in stochastic optimal control. An alternate
approach to the suggested solution of minimizing E {V} is provided by the
Separation Theorem (ref. Cl) which states, in effect, that the solution to
the above problem can be obtained in the following two steps (ref. C2):

(1) Estimate ia(t) by filtering theory (as in Appendix B).
(2) Obtair the optimal control u}k(t) from noise-free regulator theory.
Thke expression for ug(t) is then found from items 1 and 2 according to the
Separation Theorem, as illustrated below.
Optimal Control for Noise-Free Regulator
To find u%‘(t), the optimal control for the noise-free regulator, one

assumes noise effects are absent in fig. C-1 and minimizes V in eq. (C1)
For the noise-free regulator problem V and not E {V} is the performance
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v(t)

] X

T >
La- (xlr xzr E)T

Aa .
Eg= Ay 2yt Dy U+ fyu ()

CONTROLLER
U
ha IA 2 [ - J

A, b, and f, ARE DEFINED IN APPENDIX A.

Figure C-1. Off-line Augmented System

*
index, since v(t) is zero for allt. The solution for us(t) is, as is well known
(see ref. C2, for example),

&
us(t) = Aft) x, (1) (c2)
where the optimal gain matrix, A(t), is

T

b, P(t) (C3)

A(t) = -

H |

and P(t), which is a positive-definite, symmetric matrix (3x3), is the solution
of the matrix Riccati equation

- dP(t T 1 T
928 - ppya, + AT P@) - P)b, + b P+ Q (C4)




where P(Tl) = 0 and
Q = © o o (C5)

In the sequel, it is assumed that the transient region for P(t) is a small
fraction of the total interval of control O<t< Ty. In such cases (see refs. C2
and C3, for example), the response of the system for t KT, is determined
entirely by the steady-state values of the gains. In addition,” when Ti—~w
the gains assume their steady-state values throughout the entire interval
0st=<Tj. Since our ultimate objective is to obtain a time-invariant nominal
controf, only the steady-state optimal gains are computed, provided, of
course, the steady-state gains exist. Since the system is not completely con-
trollable, there is no guarantee that the steady-state gains do exist (see
refs. C2 and C4, for example). A direct simulation of eq. (C4), for values
of interest, of a(t) and a(t), was performed. For a random sampling from
the sets of values for a(t) and a(t), convergence to a steady-state occurred;
hence, it is assumed in the sequel that the steady-state gains exist and can

be found by setting the right-hand side of eq. (C4) equal to zero. The result-
ing equations are

2
b 2 _
—2ap21 -5 p21+q-0

:
Py} ~3Py, - Py Py, =0
2
b _
dPy) ¥ @Py3 - 2 Py3 -1 Py Py3 = 0
(C6)
b 2
2Py =7 P, =0
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For purposes of this paper, it is not necessary to solve for all six

unknowns Py}, Ppp: P33s P21: P23s and p;3. This is because A(t) in eq. (C3)
is only a function of py;, P35, and Py 3 that is to say

o

= -7 (P21 722 P23) (C7)

Upon solving eq. (Cé) for Py10 Py and p,, and substituting eq. (C7) into
%* 23
eq. (C2), u3(t) becomes

W) = N xp () Xy X, () + Ay (2 (C8)
where
A = - (a-\/a2+ p) (C9a)
, =\/7- (VaZ+p-2) ' (C9b)
_1000[0’\/2 (Vaz' +p - a) -V a2 +p + a]
. = (C9¢)
3
aZ+ Va2+p -a\/Z (Va2+ p—a)
and*

p=q/r (Clo)

*
The nominal control, u,(t), for the on-line-learning-control system in
fig. 3 (Part 2) is found,“from the Separation Theorem, as

uy (£) = AR (t]0). (C11)

*
The values for b and d in table A-IV were incorporated into the solution of
eq. (C6).
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To completely determine A\, M2, and )\3 in eq. (C9), the weighting factor
p must be specified. This can be accomplished in a number of ways. For
exampile, p can be chosen such that the sensitivity of A, )»2, or )\3 to varia-
tions in the parameter a (or a) is small. This type of choice for p might be
useful in the implementation of control situations, since, by choosing p
suitably, it might be possible to make the nominal control relatively insensi-
tive to variations in a (or @). On the other hand, p can be chosen such that
for specific values of a and « attitude errors remain within £0. 20 arcsec in
some probabilistic sense. This latter approach was adopted and is elaborated
upon further in the next section.

Computation of Weighting Factor

It is desired that attitude errors remain within +0.2 arcsec (see Appen-
dix A) in spite of a certain amount of uncertainty about the perturbation dis-
turbance torques £(t). InAppendix A, a range for £(t) was specified; that is,
12(t)| <10-4 1b-ft. The certainty that £(t) is in the assumed range can be
expressed in terms of the probability.

Pr{jt)|<10"% 1b-ft} = p, - (C12)

If it is very certain that f(t) is in the range, p, is very close to unity.
On the other hand, if it is not so certain that £(t) is in this range p, will not
be so close to unity. It shall be assumed that at each instant of time, t = t;,
Xt]) is normally distributed. The standard deviation, oy, of £(t1), is shown
in fig. C-2 as a function of p, [see table 26. 5 in ref. C5ﬁ .

The uncertainty in £(t) is reflected in an uncertainty about attitude errors,
x(t). It is known, for example, that u’g(t) drives the expected value of x(t) to
zero in the fixed parameter case. However, if x(t) varies by large amounts
about the zero mean, due to poor knowledge about £(t), then fine attitude con-
trol is not achieved satisfactorily. As a measure of the variation of x| (t) the
standard deviation oy, can be computed. To this end, it is assumed that at
each instant of time, ]t = tl’ x(t 1) is normally distributed.

In the following section, oy, is computed as a first step in the design of
the weighting factor p. The ultimate objective is to design p and then compare
Pr{|x;| = 0.2 arcsec! with Pr {|4] =10-41b-ft} for a number of designs.

* Computation of 9x;. -=~Here it is as sumed that a<0 and, in additionT, that
u,(t)= Ax3(t); hence, the system in fig. C-1 can be represented as in fig. C-3,
where

(1000 - A3) .
H(s) = > (C13)
(s + |af) s +)\Zs+(a+)\1)]

TThe effects of state estimation errors are not known a priori; they are
experimentally determiried in Section 3 (Part 2) and depend upon the specific
estimator design.
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Figure C-3. Relation Between Attitude Error and White Noise Input
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For stationary linear systems (as in fig. C-3)

2 :_1. fms ( )d
""x1 2w J X% wirdw
where
- 3 2
oy (©) =Sy () [H(w)]
171
and

Syy (W) =V

(Cl4)

(Cl5)

(Cl6)

since E{v(t) v()} & vt -1). 0',2(1 in eq. (Cl4) is evaluated by a contour
integration; the 31gebra, though lengthy, is straightforward. The resulting
is

expression for L
1
(1000 - )%V Wf (2Lu + la| - 2ab?) +a3

x 3 2 2
1 4left W3 - (28w_a) ]

[(ctf2 + wlzl)

where [see eq. (C13)]

)‘Z 8 ,rwy
and

A, 2 wz -a

1 n

Observe that for small values of a and @, eq. (Cl17) becomes

ch 2
x) o (1000 - )\3)

v 2 |O’l o
n

(C17)

(Cl18)

(Cl19)

(C20)
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One approach to the design of p might be to constrain sz in eq. (Cl7);

however, due to the very complicated relations between )\1, )\2, and )\3 and p

[ see eq. (C9)] this approach was not adopted. An alternate approach is
described in the following section.

Worst Case Design for Weighting Factor p. --Here v(t) in fig. C-3 is
replaced by 3 /V. The resulting expression for Xj(s) is

+3,/V (1000 - x;)

s(s + |e|) [s2 tXs+(at )\1)]

X,(s) = (cz1)

The magnitude of the steady-state attitude error in eq. (C21) is now con-
strained to be less than or equal to 0.2 arcsec (¢). This requirement serves
as the basis for the design of p and results in the following inequality

Lim s Xl(s)
S -0

= € (C22)

or

3VV (1000 - A3)
Ial (a + )\1)

s € (C23)

Upon substitution of eqgs. (C9a) and (C9c) into eq. (C23), and after a bit
of algebra, eq. (C23) becomes

rrze vt i)l acic, -2 rict so (C24)
2 116 1 (G ]
where
2
r=p+a (C25)
2
3000V [o® +a
c, =220 4 (C26)
and
2 2
C,=a’ (2a+ta?)-2¢C (C27)

184




To solve eq. (C24), V._in eq. (C26) is required. Note, also, that V is
needed in eq. (Cl7) for oy 7; thus, before discussing the solution of eq. (C24),
an expression is obtained thr V.

Expression for V. --Here V is obtained in terms of ¢y and . It is
assumed that 2(t) ~ E(t), where

£ (t) = @&(t) + v(t) (C28)

and
E{ut)v(Nn}=Ves(t - 1) (C29)

and, therefore, that ¢, = ¢,. From the solution of eq. (C28), it follows that
£ 4 1

E{&(t))&(t,)} = TI:YLI_ e~ lal Ity - 1 (C30)

hence,

(C31)

which, from the assumption that TE= 0y, leads to the following expression
for V:

v (C32)

I
N
&
~

Eq. (C32) is the desired result. Note that, from eq. (C32) and fig. C-2
it is possible to relate V to Pr {|t] = 10-4 1b-ft}.

Solution For Weighting Factor p. --The solution for p proceeds in two
steps:

(1) Selection of 9%, based upon knowledge of £(t),
(2) For various combinations of a and ¢@:
(a) The real roots of eq. (C24) are derived
(b) For the roots in eq. (C24), p in eq. (C25) is derived

[if there is more than one real root, the smallest root, is
retained since control effort is proportional to p].
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Eq. (C24) was programmed. For all combinations of a and a considered
[]a] = 0.40and - 1 = @ =-0.10] during this study, eq. (C24) had two real
roots. One root was slightly smaller than C; and the other root was slightly
larger than C1 [observe, from egs. (C26) and(C27), that for small values of
aand @ C; = - 2 C; and, that eq. (C24) reduces approximately to (r - Cl)4 =0].
Figs. C-4, C-5, andl C-6 summarize p as a function of a and « for three
designs: (1) py = 0.75, (2) py = 0. 96, and (3) Py = 0. 998, respectively. The
surface in each of these figures can be viewed as the nominal feedback param-
eter switching surface, since 7\1, \,, and )\_3 are functions only of p for given
values of a and o. It must be observed that as knowledge of £(t) becomes less
precise p increases; hence, more control effort is exerted as py becomes
smaller. In addition, for small values of @ and large negative values of a a
great deal of control effort must be exerted. This is due to the fact that the
open-loop system is unstable for negative values of a(t).

X

arcsec} can be computed for specific values of a and @. For small values of
a and o [see eqs.(C18), (C19), (C9a) and (C9b)], it is straightforward to show
that

Once a vaiue for o, is chosen oy, and, subsequently, Pr{ixli < 0.2

0.707 (C33a)

W, = P1/4 rad/sec (C33b)

e
1]

and that the approximation for ox 2 in eq. (C20) is a good one. After Tx) is
computed from eq. (C20), the expression

Pr{lxll < 0.2arcsec} = P_ {lel < 0.97 x 10-6 radians} (C34)

is found from table 26.5 in ref. C5 (see fig. C-7).

An example that illustrates the behavior of Pr { Ix | = 0.2 arcsec}
against Pr{[!] < 1074 1b-ft } appears in fig. C-8. The tradeoff between
the three designs must be noted. If it is not very certain that 2| = 10-41b-ft.,
as in design 1, a large amount of control must be used (see fig. C-9; control
is proportional to p). However, because so much control is used, attitude
errors are contained to within 0.2 arcsec with a probability that is very close
to unity, even if the actual disturbance torques are less than or equal to
+10-4 1b -ft 50% of the time. On the other hand, if it is very certain that
|1| < 10-4 1b-ft, as in design 3, about one-third of the previous control is
used. However, if the assumption is wrong, that is if the disturbance torques
are less than or equal to £10-4 lb-ft less than 99. 8% of the time, attitude
errors increase (in probability) very rapidly. For example, if p, = 0.80,
Pr{lxll <0.,2 arcsec} = 0,.96; if Py = 0, 50, Pr{|xl| <0,2 arcsec} =0,73.
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Prl|x1| < 0.97x 108} = Pr{ lz < M_l
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Figure C-7. Computation of Pr § Xl < 0.2 arcsec }
A PUix < 020arcsect
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Figure C-8. Probability that Attitude Errors Will be Less Thans 0.2 arcsec Versus Probab|I|ty that
Disturbance Torques Will be Less Than + 10-4 Ib-ft for Three. Designs of ,:
(Dpy = 0. 75, (2) py = 0.96 and (3) p - 0.998, Respectively.
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Figure C-9. Weighting Factor , and Natural Frequency @, as a Function of pl

The curve for the natural frequency w,, in fig. C-9, was obtained using
eq. (C33b). As knowledge about f(t) increases, wy decreases, and the system
responds slower. The curve for the weighting factor p was obtained, in part,
from eq. (C25) and, in part, from the approximation to eq. (C24):

which, as discussed above, holds for small values of a and a.

A continuation of the design of this appendix to systems of higher-order,
which makes use of off-line training, is discussed in Appendix D.
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Appendix D

REALIZATION OF NOMINAL CONTROLS THROUGH
OFF-LINE-TRAINING

Theoretically, at least, the nominal feedback parameter vector P, could
be obtained for all possible combinations of a and @, as in Appendix Cl\'xow-
ever, such an approach would not be practical for plants with more than two
variable parameters due to the large computer storage requirements that would
result. In addition, for higher-order systems it usually would not be possible
to obtain closed-form solutions for the steady-state gains in the matrix
Riccati equation; hence, an alternate approach may be required.

One such approach is fc obtain P, for a representative set of plant

parameter vectors ll_"] I . The set of couples IP ) is

is then used to train an off-line-learning controller.

The function of an off-line-trained controller is to define the complete
control law for a plant, with knowledge of the correct control at only a finite
number of points. The controller is a pattern recognition device which
accepts patterns (plant parameters) as inputs and produces a classification
of that pattern (the control) as an output. The relation between input and
output is obtained by training a trainable controller with the known finite
sample (the training sample). After training, the trained controller (now a
deterministic device) provides an implicit definition of the entire control law
by virtue of the controllers generalization characteristics. Generalization,
of course, is the ability to correctly associate plant situations, and the con-
trols for them, for plant situations which were not included in the original
training sample. The ability to do this hinges on the selection of an adequate
model for the trainable controller (the functional form of the adaptive mech-
anism) and a representative training sample.

The trainable controller is organized about discriminators with variable
parameters that are adjusted during a training process. Two basic training
methods have been distinguished: parametric and non-parametric See Nilsson
(ref. D1), for example. The non-parametric methods are applicable when
little or no information is available regarding the distribution of patterns in
each classification. Parametric methods, on the other hand, are used when
information is available. For the present problem the latter are applicable,
since it is known that similar plant parameters will have somewhat similar
controls.
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The realization of an off-line-trained controller may be accomplished in
two stages:

(1) A representative training sample consisting of the couples

N |
Pl p

_Aa Py is obtained.

j=1

(2) A self-organizing controller is trained using the above sample.

The above training sample, hereafter designated as S1, is obtained by
selecting the points 1_3% uniformly throughout the augmented plant parameter
a :

space and obtaining the nominal control, I_DIJ\, associated with these points.

The idea invelved here iz that, if training 15 performied on situativns djk }
which are dispersed throughout the entire augmented plant parameter space,
then all situations will be accounted for in the trained controller. The number
of points, J, required in order to have a representative sample is not known

a priori; it is selected arbitrarily initially and increased until generalization
with the trained controller is acceptable. Generalization is determined using
another sample, one with a size also equal to J, and one with elements also
uniformly distributed throughout the augmented plant parameter space.

The function of the adaptive computer (self-organizing controller), after
training, is to generate thec nominal control, P,, for any arbitrary plant
parameter vector, BAa' The adaptive computer organization that is used here
has the capacity to provide at most J discrete control choices, where J is the
number of elements in the training sample. No provision is made for inter-
polation; that is to say, points in the augmented plant parameter space that
are not in the original training sample are classified into a category corres-
ponding to the most similar element, E%a (j=1, 2, ..., J), from the training
sample. The metric that is used for measuring similarity is the Euclidean
norm; hence, classifications are made on the basis of minimum distance.

Two adaptive computers are developed in this section. The first is syn-
thesized directly from the training sample and has the ability to generate J
discrete control choices. The second is organized like the first except that
it is only able to generate n discrete control choices, where n<J. It is shown
that the second adaptive computer has the advantage over the first of smaller
size in hardware, or, equivalently, requires less computation time in a com-
puter simulation. The disadvantage of the second computer over the first is
that the number of possible control choices is fewer; thus, the selection of
controls to affect a minimum distance classification is poorer for the second
computer. This deficiency is minimized, however, since the n control
choices are selected on the basis of the frequency of occurrence.




Adaptive Computer A

The first adaptive computer utilizes the training sample Sl directly. The
classification of an arbitrary point EAa (which may or may not be in the
training sample) into one of the J control choices is based on a minimum
distance classification. This classification requires the computation of:

T

[ea,Bh, | = v Viza-Bh)" (ma -k e

for j =1, 2, ..., J. The control selected for EAa is the one that is associ-
J

j=1

discriminant for the minimum distance classifier is developed next.

ated with the element in I_"A for which eq. (D1) is smallest. The
a

If both sides of eq. (D1) are squared, the result is:

. pl - pT -2 pTL j iT B
” Pa. - Ba ” = Ba Bpy -2B, By tRy Py
a a a a a a a
- pT T I .1 piT 5
SEBA Ba -2 By By -z EBa By | (D2)
a a a a a a
for j=1, 2, ..., J. Quite obviously eq. (D2) is minimized when the term

in brackets is maximized, regardless of the first term (this term is common
for all j). The jt discriminant® becomes:

_ Tl J 1 51T 4
gj(EA)‘EA I_)A -7 EA EA (D3)
a a a a a
for j=1, 2, ..., J. Observe that gj (EAa) is linear and may be realized

with the linear element shown in fig. D-1. The weights Wil Wi2s and w33

are specified on the figure. The complete adaptive computer A is shown in
fig. D-2. The operation of the computer is as follows: A plant parameter

vector is presented to the machine at the designated input. The outputs of

the J discriminants [eq. (D3)]are available as inputs to the maximum

*®
The relation of discriminants to adaptive computers is discussed in Nilsson
(ref. DI1) and, therefore, is not elaborated upon here
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Figure D-1. Realization for Equation (D3),j = 1,2,...,J

selector. This device selects the maximum discriminant and produces, as
an output, the control choice associated with this d1scr1rn1nant The number
of discriminators required for this computer is J; that ~1s, J elements in hard-
ware, or J iterations in a computational scheme. .

>

Adaptive Computer B

While excellent results may be obtained with adaptive computer A, the
computers disadvantage is the large number of elements (discriminators)
required. The development of adaptive computer B is oriented to reduce the
number of discriminators and at the same time minimize the loss in pro-
ficiency because of this reduction. It involves the following steps:

(1) Modify S1 to S2 by reducing the number of control choices in Sl
from J ton (n<7J).

(2) Specify a computer using S2 and the minimum distance criterion
as used for adaptive computer A.

(3) Eliminate all redundant elements in item 2.
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Figure D-2. Adaptive Computer A
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The reduction of controls specified in the first step is accomplished by mergmg
similar controls PJ](j =1, 2, ..., J) in Sl into n prototype controls 1_31 (i=
2, ..., n). Two téchniques for affecting this reduction are discussed next

)

The first tcchnique is elementary in concept and is easy to apply. The
feedback parameter space Sp,k is pregridded into n m x m x m cubes; the

center of cach square (hypercube) then becomes a prototype. The points
P)] (j=1, ..., J)in this space are merged into the prototype point of the
hypercube in which the points lie. The selection of prototypes by this method
usually will not be very efficient unless the distribution of points P (G=1,

.+, J) happens to be uniform throughout Sp , for prototypes may be

assigned where classifications rarely occur.

A more efficient method is one in which prototypes are created according
to the density of the vectors in Sp . This is accomplished by performing a

Clusiecr analysis of ithe feedback parameter space and assigning prototypes to
the cluster points found. Cne method for performing such an analysis has
been successfully used by Sebestyen (ref. D2) and is presented next (as our
second technique).

Sebestyen's technique is similar to the approach used in on-line learning
for creating hyperspherical control situations. Initially the method requires
that a cell (a hypersphere of radius D) be created and centered on an arbitrar-
ily selected point PJ G=1, 2, ..., J). The mean of this cell, M;, is initially
set equal to PJ and the number of points in the cell, Nj, is initially set equal

to 1. If the next pattern falls within the cell (that is, if the distance between
M; and the pattern is less than D), Mj is updated by recomputing the mean

of the two samples, and Nj is set equal to 2. When a sample falls sufficiently
far outside the first cell, a new cell is created whose center is located at that
pattern. If the sample falls outside the first cell by a small amount, then the
sample is temporarily stored. The purpose of this step is to create a guard
ring which will allow maneuvering room for the cell. As the process continues
all vectors are forced into cells. At the conclusion of the process the mean

of each cell is the location of a cluster point. The number of points in the cell,
N; i=1, 2, .n), divided by J, the total number of points, is the a priori
probab111ty, pi, of the occurrence of the ith cell. Cells with low values of P:
may be combined with adjacent cells if a reduction in the number of prototypes
is desired.

The modified training sample S2, obtained by either of the above techni-
ques, results in the formation of n mutually exclusive subsets. The elements

of each subset are the points Efﬁ (=1, 2, ..., J)in S2 which have the same
a
control. The designation for the ith subset (i=1, 2, ..., n), which contains
m, elements, all of whose controls are PA, is l 1 k ml . Since there are
k=1

n mutually exclusive subsets,

m, =J (D4)

HnMs




T..e elements of each subset define regions of constant control in SPA
—ida

Each of these regions, in general, will vary in size and geometry depending
on the number and the location of points in the subset. The boundaries which
separate these regions may be viewed as decision boundaries which are to be
realized by the adaptive computer. The adaptive computer to be used requires
n discriminators, one for each control category. As before, the output of the
computer is the control associated with:

g; <EA >

a

The computer organization which is used to realize the decision boundaries
is shown in fig. D-3. Each discriminator is associated with the boundary that
defines the control region of that discriminator.

max
i=1, ..., n

The discriminator, g; (—EA- ), whose output is maximum for all points in
a

the ith control region, uses m; subsidiary discriminators which are defined
directly from the ith subset. Each subsidiary discriminator is a minimum
distance classifier; hence (compare with weights in fig. D-1)

(k)

W.
il i, k
= Py (D5)
(k) 2
Wi2
and
. T .
oo () e
a a

where k = 1, ..., m,, define the appropriate weights of the kth subsidiary
discriminator in the i~ discriminator. The output of the ith discriminator
for an arbitrary input EAa is

; i i, k
a a
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Figure D-3. Adaptive Computer B
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{compare with the discussions for eqs. (D2} and (D3)]. A detailed structure
for the ith discriminator appears in fig. D-4.

The decision surfaces which may result from the above process are
demonstrated in an example in fig. D-5a. There are three sets of points
which define three control regions. If the points are used to specify three
discriminators [using egs. (D5) and (D6)] the indicated decision boundary
results. This boundary is defined by segments of straight lines which sep-
arate points of different classes. The lines are always drawn equidistant
between the closest points of different classes. The lines between points
of the same class are not drawn (though they are defined in the computer)
because they do not partition different control regions (hence, they are
redundant). This point introduces the final step in the development of the
adaptive computer, namely, elimination of redundant elements.

In fig. D-5b, itis shown how the exact decision boundary in the above
example can be defined using only essential points from fig. D-5a. Each
point used corresponds to an essential subsidiary discriminator in the com-
puter. The elimination of redundant elements from the computer may be
accomplished with the following procedure:

(1) Arbitrarily remove the subsidiary discriminant gi(k) (Pap )
from the computer (see fig. D-4). a
(k)
Vil
(2) Apply the point 1_3_Aa = (k)| 2s2n input to the computer.
w
i2
(3) If the classification produced is 1_311\ discard the element; if not
reinsert the element.

(4) Repeat the above steps for all subsidiary discriminators.

The above procedure essentially tests every point to see if it is needed
to define the decision boundary. This, of course, results in reducing the
number of elements in the ith discriminator from m; to another number, say
li(lismi). It is not possible to state the extent of the reduction, as it depends

on the number, size and distribution of each subset.

The final test of the resultant computer is its generalization characteris-
tics. As stated previously, generalization is the ability to classify points
correctly even though the points were not included in the training sample.
This test requires a sample similar to Sl; the sample should have points
which are uniformly distributed throughout SPA (but not the exact same

—Aa
points) and sample size should be also about J. This sample is applied to
the computer and an evaluation procedure determines the proficiency obtained.
On this basis a decision is made concerning the acceptability of the adaptive
computer's generalization characteristics. If generalization is found unac-~
ceptable, then a new sample is required, one which is larger than S1, and a
new adaptive computer is developed with this sample.
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The final comment is concerned with the implementation of the adaptive
computer. Two alternative approaches are available; hardware and simula-
tion. The choice of one over the other depends on various systems considera-
tions that will not be discussed here. The hardware approach results in a
small package since each weight [egs. (D5) and (D6)] may be realized with a
resistor and the summation may be performed with miniature solid - state
circuits. A computer implementation (simulation) requires that all of the
subsidiary discriminants must be evaluated and compared in order to deter-
mine the maximum values in eq. (D7).
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Appendix E
STOCHASTIC AUTOMATA LEARNING ALGORITHM

Recently, Fu and McLaren (ref. El) have investigated a learning system
the synthesis of which is based upon observed interactions between the learn-
ing system and its stochastic environment. The similarities between the
Fu-McLaren system and the system presented in this document, as well as
in the philosophies of solution are revealed in the following pertinent quotes:

""The learning system will perform its operations iteratively, during succes-
sive intervals (or steps) of time. During a given step in time, the output
of the learning system is a particular action or set of parameter values
resulting from a decision by the learning system. The action or output
takes place in the environment. As a result, the environment reacts to
this action in a ceriain way, observable to the learning system. Having
observed this, the system evaluates the reaction as todesirability. Based
upon this evaluation, the learning system will change its structure or
parameters in selecting its action for the next step. The change should
be such that the 'average' desirability (or performance) increases (or
improves). As structural or parametric changes are repeated step by
step, the learning system seeks (or converges toward) the action that
would yield the best performance. This step by step process is consid-
ered as a learning process--steady improvement of performance based
upon past experience. The system learns as it operates in its environ-
ment; there is no separation of the operation into training and working
phases. The system learns from environmental reaction to its own
actions. The environment is assumed, of course, to be random; its
statistical properties are, in general, unknown to the designer except,
perhaps, for the assumption of stationarity. In order that the learn-
ing system be able to evaluate its reactions from the environment,
the value of each 'useful' (as a measure of performance) reaction
must be specified. Such specifications are bound-up with the purpose
or goal of the learning system."

The notational correspondence between the problem in this document and
Purdue's is summarized in fig. E-1. [The block diagram in (a) is adapted from
f1g. 1 of ref. El ] It is assumed in this section that PI (k, £; m)is not given by

(58); PI (k, £; m) is, for the present, an unknown measure of the system's
performance [at t=(k+l) T, k=0, 1, ...]. InItem 9D in fig. E- 151 (k, £; m)
is normalized in order to ensure that

<1 (El)
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Figure E-1. Learning System Block Diagram and Correspondences Between
the Purdue and the Douglas Systems

207



208

for all k20. This normalization is required in order to apply stochastic
automata theory to the synthesis of the self-organizing controller.

Stochastic Automata Approach

Assume that the £th conirol situation has been established and that the
nominal feedback parameter vector, _1:_’1 , has been associated with it. A set
of r uniformly distributed feedback vectors, which includes P) as an
element T, is then constructed. The construction of this set, which is
centered about P! in a hypersphere of radius s, and which is denoted

A
[P! =T IPl
Zit. =
i =1
where
] [}
P
_Er a —A (E2)
is discussed shortly.
Probabilities Py» P2s ++ s and p are assigned to each one of the r

possible feedback parameter vectors'in eq. (E2). These probabilities are
updated every T units of time according to the following rule:

It
Yoo - p!
then
p (1) = op, () +(1-0) [1-2 0, £ m) (E32)
(0 -o)

p; (k+1) = @p, (k) + T—33 Z(k £;m) ixj =1, ...,r (E3b)

fork = 0, 1, ..., kaT. In eqs. (E3a) and (E3b)

tIn general, Pl need not be included a priori in this set. If it is not included,

then eq. (E2) does not hold; that is to say, % is chosen in the same way as
the other r-L feedback vectors.

Tt The notation, p; (k+1) for the probability that P (k+1; t) = P{_‘does not
reflect the cond1t1on1ng to P’x‘ (k; t). This notatlon is used for convenience.




0<06<1 (E4)

and

In general, Z(k,f;m) is either a discrete-parameter (k) continuous-valued
random process or a discrete-parameter discrete-valued process; hence, the
probabilities in eqs. (E3a) and (E3b) are discrete-parameter continuous-
valued random processes (random sequences).

Updating the probabilities according to eqs. (E3a) and (E3b) is shown by
Fu and McLaren to lead to a control choice which minimizes the expected
value of Z(k, £; m), where (ref. El).

E |z tm)| - i E|z (k8 m)|g:‘ o = pHE|pw| (=6
i=1

Eq. (E6) is written for convenience as

ElZ(k, tm)| = i m, (k) E |p; ()} (E7)
in1 :

where

m, (k) = E\Z(k, £; m)

x4 [}
By, Gst) = P} (E8)
Fu and McLaren prove that in the stationary case, that is, the case when
m.l(k) ='m.1fora11k(i =1, ..., r) (E9)
E |pi (k)l"yi

monotonically, where

v . i v &
;= 0, (1-m) Z T, (1-m) (E10)
3 Y/iE 8 4
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and

E|lz « +1, 1;m)l<E|Z (k, l,m)l, finite k > 0,
and
r
Lim EIZ(k,!;m)l =z m, v, (E11)

which means that E {Z (k, £; m)} converges in a monotonic decreasing
manner toward its minimum limit value.

They also demonstrate that eqs. (E10) and (E11) hold, if

| I z2 )
E{Z (2 m)|P (k;t):P"fI =m.(k) i=1,...,r (E12a)
A =i i
Lim m, (k) =m_, monotonically, (E12Db)
k—.(!) 1 1
'Y.1 (k) —»'Yi monotonically so that (El12c¢)
>L oy (k)>-1— v <« Lloy (k) - Z, allk (E124)
Vi 27 i =r’ ir7 i Tr’

Hence, monotonic convergence is guaranteed even in certain nonstation-
ary cases.

It is important to note that, in general, the values for the conditional
expected values m, | m, (k)] are not available to the designer. If
Z(k, £;m)is anergodic random process, then the expected value of Z(k, £; m)
is approximated by the average :

k
EIZ(k,!;m)Iz(—k—}rT) z PI (g, 4;m)/CT (E13)
B:O

which provides a convenient way of evaluating the expected value on-line.
Observe, also, from eq. (E13) and Item 10D in fig: E-1, that for an ergodic
process

E{Z (k, £; m)|=PI (k, £; m) (E14)

hence, for an ergodic process, the Douglas and Purdue indexes of perform-
ance are the same.




One final observation is in order. Suppose that instead of minimizing
E{Z (k, £; m) }, it is desired to minimize the expected value of the discrete
time average of Z (k, !; m); i.e., to minimize

k
i D ZGL m)]

=

E

It is straightforward to show that a sufficient, although not necessary,
condition for minimizing this quantity is eq. (E3); hence, for an ergodic
process, the solution to the problem of minimizing E ‘ Z (k, &; m)} is also
a solution to the problem of minimizing E | Pl (k, £; m)} .

In the next section, it is assumed that either mj (k) = m; (for all k = 0)
or the conditions in eq. (El2) are satisfied. Further discussions on this
important point appear in the section on Convergence of Algorithm.

Description of On-Line Learning Algorithm

An on-line learning algorithm that is based on the preceding optimization
technique is summarized infig. E-2. It is assumed here that the overall goal
is to minimize E { Z (k, 4, m)} . ,It is not contended here that minimizing
E lZ k, &; m)| is sufficient for reducing attitude errors to within *0. 2 arc-
sec] and that in each control situation on-line learning terminates as this
goal is achieved; hence, it is possible to reach a state of complete learning.
By definition, complete learning refers to the condition when the optimiza-
tion problem has been satisfactorily solved for every existing control
situation.

The control situation portion of the algorithm in fig. E-2 has been
discussed in connection with the error-correction algorithm and, therefore,
will not be elaborated upon here. After a new control situation is established,
a set of r uniformly distributed vectors EC1 11' is constructed. Before
proceeding further, consider the construction of this set.

Construction of Uniformly Distributed Feedback Parameter Vectors. --

A set of vectors IE‘i Ir must be constructed that are uniformly distributed
in a hypersphere of radius s that is centered about.PY , the nominal control

associated with the ct?! control situation. It is assumed that
c c
Er = EA (E15)

which means that only r-1 vectors are needed. Let

c _ c .o _
PS = P + & i=1, ..., r-1 (E16)
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where the components of §-1 [ éi = (6i1, 5-12, . )T]are uniformly distributed
(fig. E-3). It follows from the construction statément above, that

C C .
| e$ - BA\\ < s i=1, ..., r-1 (E17)
hence,
2 2 2 2 .
64 t 05, t 8 i3 < s i=1,..., r-1 (E18)

Eq. (E18) must be satisifed for all values of ‘Sij? hence, it must be
satisfied for the worst possible case, when 6ij ='A, j =1, 2, 3. In this
case, eq. (E18) becomes

A < \/13:; (E19)

One concludes, therefore, that choosing

A= fs‘i (E20)

is sufficient to satisfy eq. (E18) for all values of § ;..

proy)

-
AN

Figure E-3. Uniformly Distributed 5 ij’s(j -1213,)

212




SAMPLE -——

ESTIMATES |-
OF PLANT
PARAMETERS

=0

A

Y

HAS SYSTEM MOVED
OUT OF ¢ CONTROL
SITUATION?

NO

lYES

LOCATE
PRESENT CONTROL
SITUATION

l

CONTINUE
ANOTHER 3T

OPTIMIZATIONS FOR

LET
SYSTEM
RESPOND FOR 3T

m=1

N WRLLIFS

T(c)=17

SET
CONTROL
FROM MEMORY

&

CONSTRUCT
1 UNIFORMLY DISTRIBUTED
FEEDBACK VECTORS

TNITIATE
CONTROL BY CHOOSING
AN ELEMENT,

Pc, FROM ‘ _Pfl
J

!
1

NO

INITIATE

CONTROL BY SETTING
*C . - *
P @t=Py

¢ (kp)

LET
SYSTEM RESPOND
FORT

=~

‘2

Figure E-2. Stochastic Automata Learning Algorithm
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Continuation of Description of Learning Algorithm in Fig. E-2.--After
constructing {P¥}{, probabilities p)(k), ..., and p_(k) are associated with
the respective feedback vectors. Initially, [fig. E-2

p(0) = Py(0) =...= pfo) = = (E21)

In this way, the initial control choice is unbiased; this control choice, which
is designated E?, may be thought of as being obtained by tossing an r-sided
coin, where each side is associated with one control choice and is equally
probable.

Z(o, ¢; m) is computed from eq. (E5); C must be specified or determined
ahead of time. Next, E{Z(o, c¢; m)}is computed and compared with the
threshold, 6. If Z(k, c; m) is ergodic E {Z(o, c; m)} can be computed from
eq. (E13). Now, if E{Z(o, ¢c; m)}=<6 the on-line optimizations are termi-
nated in the cth control situation. If, on the other hand, E {Z(o, c;m)>5
then the probabilities py(0), ..., and p,(0) are updated to py(l), ..., and
pr(l) using eqs. (E3a) and (E3b).

Next, a decision is made as to which control is to be applied for T<t<2T.
In the present algorithm, the control choice is obtained by choosing the feed-
back vector having the largest probability associated with. it; hence, this
means, that for some k>K,

max  p(k) = p.() <> gf (it) = ES. (E22)

i=1,...,r

The meaning of 'for some k>K' will become clear shortly.

If p:(1)>p;(1), alli’# j=1, ..., r then the same control is applied to
the system for T<t<2T- If, on the other hand, the most probable control is
no longer _1333 then either of the following possibilities may occur:

1. pi(k+l)>pj(k+1) for one value of i # j=1, ..., r.
2. pi(k+1)>pj(k+l) for some values ofi = j=1, ..., r.
3. pi(k+1)>pj(k+l) for all values of i = j=1,-..., r.

An example that illustrates the three cases is summarized in table E-I.
In the first case above, Q = 1, whereas in the second and third cases, Q>1
and Q = r - 1, respectively (fig. E-2). In the latter cases one element is
chosen by assuming p;;, pj2, ..., and pjq are uniformly distributed (which
they are). This element, which is denote pj(l) may be thought of as being
obtained by tossing a Q-sided coin, where edch side is associated with an
element of {pi 1 For the example in table E-I, K = 3; that is to say,
K is the first v%lue of k for which Case 1 above holds.
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Returning to fig. E-2, the control E&k(l) = P¢ is chosen and applied to the
system for T<t<2T, after which Z(l, c; m) is computed, and the entire pro-
cedure repeats.

The sampling of PAa (tlt) occurs every 3T units of time; thus, at least
three decisions are made for each entry into a control situation.

Discussions

Implications of Eq. (E22).--Here the implications of eq. (E22) are
investigated in greater detail in order to gain a better understanding of the
Stochastlc Automata Learning Algorithm. Suppose *!for example, that for
k>2K PA (k;t) = J!' Under what conditions is (k +1; t)also equa.l to

'P ? The answer to thic q"""*“""‘ ie S‘....uuuL..a\.d in the 1 Luuuwxug ihcorem,
the proof of which is given below.

Theorem:

-1 |
If E:‘Q (k;t) = _Ejl and Z(k, L; m)<r—r—, then Ej\k (k +1;t) = Bj!-

Proof:

_P_’A*! (k;t) = Ej! means, from eq. (E22), that pj(k)>p;(k) for all
i#j = 1, ..., r. From eqs. (E3a) and E3b) it follows, therefore, that

pj (k + >p; k+ 1)+ (1 -0) [1 -(rr_l)z (k, z;m)]. (E23)

Now. since Z(k, £; m)<r L rj(k+1)>p; (k+1)foralli=j=1, ..

., T
hence, PA! (k +1;t) PJ’-

An application of this theorem appears in table E-I for k = 5. There

Z(4, c; m) = 0.10 which is less than r% = 0.75; hence, ¢ (5;t)
(4 t) = CZ Observe, also, it does not follow if Z(k, l ; rn)>—ri thalé
i (k+ N> Pj (k +1) for somei=#j=1, ..., r. This is demonstrated in

table -] for'k = 6.

This theorem illustrates a disadvantage to selectmg the control choice
on the basis of eq. (E22). As long as Z(k, &; m)< a new control choice will
not be made; hence, the performance may be deterxoratmg rapidly, that is
Z(k, 2; m)—-—r:l , with no change in control possible. This situation is not

very desirable; hence, an alternate procedure for choosing EA*! (k +1;t)is
desired.

One such alternate approach might be to associate the probabilities
pl(k), .-+, and p,(k) with an r-sided coin. In this case, the sides are biased
by the probabilities; hence, the control choices are not equally-likely. In
addition, the control choice having the highest probability will not always be
chosen. Convergence to such a control choice is in probability, which means
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that for some k > K] only a small percentage of control choices other than
the one having the highest probability will be made.

Convergence of Algorithm. --Unless eq. (E9) or the conditions in

eq. (E12) hold, convergence in any sense is not guaranteed when the linear
model in eq. (E3) is used as the basis for the stochastic automaton. This
poses a major obstacle for the use of this model in our problem, since the
system in this document is time-varying and, therefore, is nonstationary.
At present, no convenient choice for Z (k, £; m) in eq. (E5) has been found;
hence, the stochastic automata algorithm is not applicable to the problem
in this document although it does provide an interesting approach.

218




References
El Fu, K. S.; and McLaren, R. W.: An Application of Stochastic Automata

to the Synthesis of Learning Systems. Rep. TR-EEb65-17, School of
Electrical Engineering, Purdue Univ. » September 1965,

219



220

Appendix F

ADAPTIVE, RANDOM-OPTIMIZATION
LEARNING ALGORITHM

Introduction

Here the discussion beginiwith the expression for the on-line-optimal
feedback parameter vector, EAI (k+1;t), and indicates heuristic techniques
for choosing m(k+l) randomly. Of primary interest is a so-called adaptive,
random-optimization technique; however, a brief discussion of simple,
random-optimization is in order first. Discussions on simple random-
optimization are found in Idelsohn (ref. F1), Brooks (refs. F2 and F3) and
Matyas (ref. F4); discussions on adaptive, random-optimization, in the
context of a stationary hill-climbing problem, are found in Matyas (ref. F4);
discussions in which random and gradient optimization techniques are com-
pared, and which point out the superiority of the random technique in many
circumstances, are found in Rastrigin (ref. F5) and Gurin and Rastrigin
(ref. F6).

Simple Random Optimization
Simple random optimization of the sub-goal (PI(k, £;m) involves a
sequence of trials form, where 1 is now a 3 x 1 random vector with zero

mean and unit correlation matrix. The kth realization of 7 is denoted (k)

For the purposes of a simple, random-optimization learning algorithm,
eq. (81) is rewritten here as

_P_i!(k'*‘l) = Ei!(k-l) + y(k) 1(k) + 1(k+1)

k=0,1,..., (F1)
where
l(o)égi - Prto) (F2a)
*L
P, (-ndo (F2b)




and y(k) is the decision function that is defined in eq. (83), with
y(0) 81, (F3)

The effect of the decision function is to remove unsuccessful choices for ™
from succeeding iterations of BX .

A brief description of a heuristic learning algorithm that is based upon
a simple, random-optimization procedure follows, The convergence of this
algorithm is proved in Matyas (ref. F4) for a stationary, calculus, hill-
climbing problem. Questions related to the convergence of the algorithm
(and also to the adaptive, random-optimization algorithm discussed in the
next paragraph), as applied to our problem, a dynamic optimization problem,
have not been answered, since they were not within the scope of the present
study.

Observe, from eq. (F2), that the nominal control Pf serves as a starting

point for the on-line optimizations. P %is applied initially for 0<t<T and
Pl(o, #;m) is then computed, A value o 7 is chosen and the control

*4 1
Byt = phe o) (F4)
is applied to the system for T<t<2T. PI(l,£;m) is then computed and com-
pared with PI(o, £;m).
If PI(1, £;m) < Pl(o, £;m) -¢'(1) then y(1) is unlty, which means that the

choice for =, n(l) is satisfactory; hence, Tr( is retained. A value for r is
chosen and the control

2;t) = pls o)y (@) (F5)

is applied to the system for 2T<t<3T.
If on the other hand, PI(l,#;m) > PI(o,4;m) -¢(1), y(1) is set equal to

zero, which means that the choice for m, ™ 1), is unsatisfactory. A new
value is chosen for 7, and the control

Pl = phen® (F6)

is applied to the system for 2T<t<3T. This procedure is repeated until
PI(k, £;m) < gle).
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In general, the probability of a successful step using simple, random
optimization is 1/2. Matyas (ref. F4) has demonstrated, however, that the
convergence can be speeded up by incorporating learning and memory into
the above procedure. A modified version of his technique is discussed next.

Adaptive, Random-Optimization

Adaptive, random optimization of PI(k,{;m) involves a sequence of trials
for n(k+1), where w(k+1) is now a discrete stochastic process which has a
variable mean value and a variable correlation matrix. These variables
are adjusted in a learning process that is based upon past successes and
failures. The effect of this is to increase the probability of a successful
trial; this is achieved by learning the most favorable direction and step size
for an iteration of the feedback parameter vector.

n{kt1} is now given by the expression

_ pt
=0) = p} (F7)
m(k+1) = d(k+1) + T(ktl) p k=0, 1,... (F8)

where

B is a (3 x 1) random vector with zero mean and unit correlation
matrix, T(k+1) is a transformation matrix whose elements can be

selected so as to control the standard deviation of the vector
T(k+1) p,

and

d(k+1) is a mean value vector given by the expression

a1 =0 (F9)

k1) = C (yw) dw) + ¢, (yw)z o (F10)

where

Cp and C} are functions of the decision function defined in eq. (83) and
in the sequel are assumed given by the relations

Co(y) = 3+3 v (Flla)

o —




and

¢, (v) = 3y (F11b)

The general conditions which Cy and C; should satisfy are found in
Matyas (ref. F4). Choosing d(1) =@ tends to leave m(1l) unbiased. The
realization of m(k) in eq. (F10), _T_T_(l (k), follows from eq. (F8). The final
expression for d(k+1) is

i) = [34 2y00] a0 + 2y00 T 1™

k=1,2,... . (F12)

Before proceeding to a discussion of an adaptive, random-optimization
learning algorithm, the implications of choosing Cp and C] as in eqs. (Flla)
and (F11lb), respectively, are discussed. Two cases are distinguished:

(1) y(k)=0--poor choice for m(k), and (2) y(k)=1--acceptable choice for (k).

When y(k) = 0 Cg =% and C| = 0 and d(k+1) becomes
dk+1) = 3 d(k) (F13)

In this case, the mean value of'_T_r_(k+1), d(k+1), can be viewed as being

in a direction opposite to the preceding mean value d(k), hence, CO is called
the rejection coefficient.
Wheny(k) = 1 Cg = landC; = % and d(k+1) becomes
1 (k)
d(k+1) = d(k) + > T(k) p (F14)

In this case, the mean value of m(k+1l) is chosen in the same direction

as the preceding mean value. Observe that for an unsuccessful step C, =0
and for a successful step C1>0; hence, Cj is called the detection coefficient.

A Learning Algorithm

An on-line learning algorithm is summarized in fig. F-1, Included on
the figure is a control situation algorithm, one which has been discussed in

223



224

connection with the Error-Corraction Learning Algorithm in Section 4, of
Part 2. A brief description of the flow diagram follows.

The system is allowed to run for T units of time under the action of PC.
E_R iﬁ the nominal control for a new control situation and is the stored value
of Pr¢ associated with the last entry into an existing control situation. The
on-line performance index is evaluated for 0<t<T. Rather than let the system
continue under the same control for T<t<2T, as in the Error-Correction
Learning Algorithm, P}€ is updated by m(1), for T<t<2T.

The value of m(1l) is computed from eq. (F8) by choosing &[E(l)] and
specifying d(1). It is assumed in the sequel that T(k+1) is the identity
matrix (3 x 3) [time did not permit the investigation of an algorithm which
updates T(k+1)]. If the cth control situation is entered for the first time
d(1) is set equal to zero [see eq. (F9)]. If, on the other hand, the cth control
sitnation iec heing re-entered, 4(1)ic get egual to the last value of 4 that ic

(1 ce
stored in a memory compartment associated with the cth control situation;
hence, eq. (F9) should read d(1) = 0 when m = 1.

The on-line performance index is computed for 0<t<2T and is then
compared with the performance for 0<t<T. If the performance for 0<t<2T is
better than that for 0<t<T, .y(1) is set equal to unity, d4(2) is computed from
eq. (F12), p is chosen EZ)] , and w(2) is computed from eq. (F8). Finally,
if the performance for 0<t<2T is worse than that for 0<t<T, y(1l) is set equal
to zero, d(2) is computed, p is chosen [&(2)], and m(2) is computed.

In both of these cases, once m(2) has been computed, the new _lz*c, which
is designated P%%(k,,), is stored. The on-line performance index is then
evaluated for 0<t<3T. PI(2, c;m) is compared with PI(1, c;m) and the entire
procedure repeats.

Here, as in the Error-Correction Learning Algorithm, the estimates of
the plant parameters are sampled every 3T units of time,

In conclusion, the following observations are noted: it is possible to
distinguish two levels of learning in the proposed on-line-learning controller.
The first level is associated with learning the on-line-optimal feedback
parameter vectors B* (t) for each control situation (8= 1,2,...). The
second level, which is lower in the hierarchy, is associated with learning
optimum step sizes and directions for each control situation. The second
level of learning represents, in effect, an attempt to learn how to learn
PRr(t).
=A
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Figure F-1. Flow Diagram for Adaptive, Random-Optimization Leaming Algorithm
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